Аннотация
Пивная дробина является отходом пивоваренного производства и содержит в себе ценные биологически активные вещества, извлечение которых затруднено из-за присутствия различных полимеров, осложняющих экстракцию. Проведен анализ возможности извлечения полезных органических соединений инновационными способами глубокой переработки, в том числе экологичными, разрушающими внутренние структуры матрицы растительного сырья. Целью работы являлось исследование аналитических источников в отношении переработки пивной дробины как источника вторичных сырьевых ресурсов для получения органических соединений растительной матрицы различными методами в условиях развивающихся научных подходов, что решает актуальные вопросы экологизации пивоваренной промышленности.Изучалась зарубежная и отечественная аналитическая база научно-технической литературы за последние 5–10 лет (Scopus, Web of Science, RSCI и ВАК) по изучению структуры дробины и методов извлечения органических соединений различной природы с применением методов анализа и обобщения данных.
Наряду с классическими способами переработки дробины (кислотная, щелочная и ферментативная) были приведены физические и механические способы переработки, направленные на извлечение биогенных пептидов, фенольных соединений и жирных кислот. Показано, что характер обработки зависит от вида извлекаемого соединения. Для извлечения редуцирующих соединений, предназначенных для сорбции, наиболее эффективно воздействие высоких температур (выше 150 °С). Комбинированная обработка кислотами или щелочами целлюлозо-лигниного комплекса позволяет добиться выхода 76,2 % гемицеллюлоз. Кислотный гидролиз арабиноксиланов эффективен при температурах 120–160 °С. Щелочной совместно с физической обработкой позволяет достичь 60 % арабиноксиланов в смеси с фенольными соединениями. При извлечении азотосодержащих, фенольных и липидных соединений наибольшее значение имеет степень измельчения биоматериала и органический растворитель, позволяющие добиться сохранения пространственной структуры и высокого выхода (до 86 %) полезного органического соединения. Показано применение ультрафильтрации, которая позволяет сконцентрировать выделяемое биогенное соединение с сохранением его активности с выходом до 95 %.
Проведенный анализ позволил сделать заключение о перспективности переработки пивной дробины экологичными способами, позволяющими достичь высокой степени выхода и чистоты получаемых органических соединений, что актуально для получения биоактивных соединений (пептиды, фенольные соединения, жирные кислоты).
Ключевые слова
Зерновая дробина, экологизация, биогенные пептиды, фенольные соединения, целлюлоза, гемицеллюлоза, физико-химические методы, инновационные технологииСПИСОК ЛИТЕРАТУРЫ
- Shen Y, Abeynayake R, Sun X, Ran T, Li J, Chen L, et al. Feed nutritional value of brewers’ spent grain residue resulting from protease aided protein removal. Journal of Animal Science and Biotechnology. 2019;10(1). https://doi.org/10.1186/s40104-019-0382-1
- Tang D-S, Yin G-M, He Y-Z, Hu S-Q, Li B, Li L, et al. Recovery of protein from brewer's spent grain by ultrafiltration. Biochemical Engineering Journal. 2009;48(1):1–5. https://doi.org/10.1016/j.bej.2009.05.019
- Lynch KM, Steffen EJ, Arendt EK. Brewers' spent grain: a review with an emphasis on food and health. Journal of the Institute of Brewing. 2016;122(4):553–568. https://doi.org/10.1002/jib.363
- Verni M, Pontonio E, Krona A, Jacob S, Pinto D, Rinaldi F, et al. Bioprocessing of brewers’ spent grain enhances its antioxidant activity: Characterization of phenolic compounds and bioactive peptides. Frontiers in Microbiology. 2020;11. https://doi.org/10.3389/fmicb.2020.01831
- Santos M, Jiménez JJ, Bartolomé B, Gómez-Cordovés C, Del Nozal MJ. Variability of brewer’s spent grain within a brewery. Food Chemistry. 2003;80(1):17–21. https://doi.org/10.1016/S0308-8146(02)00229-7
- Mussatto SI, Roberto IC. Chemical characterization and liberation of pentose sugars from brewer’s spent grain. Journal of Chemical Technology and Biotechnology. 2006;81(3):268–274. https://doi.org/10.1002/jctb.1374
- Waters DM, Jacob F, Titze J, Arendt EK, Zannini E. Fibre, protein and mineral fortification of wheat bread through milled and fermented brewer’s spent grain enrichment. European Food Research and Technology. 2012;235(5):767–778. https://doi.org/10.1007/s00217-012-1805-9
- Kanauchi O, Mitsuyama K, Araki Y. Development of a functional germinated barley foodstuff from brewer’s spent grain for the treatment of ulcerative colitis. Journal of the American Society of Brewing Chemists. 2001;59(2):59–62.
- Carvalheiro F, Esteves MP, Parajó JC, Pereira H, Gírio FM. Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresource Technology. 2004;91(1):93–100. https://doi.org/10.1016/S0960-8524(03)00148-2
- Verni M, Verardo V, Rizzello CG. How fermentation affects the antioxidant properties of cereals and legumes. Foods. 2019;8(9). https://doi.org/10.3390/foods8090362
- Kobelev KV, Gernet MV, Gribkova IN. Innovative method for obtaining biologically active compounds from brewery mash. Food Processing: Techniques and Technology. 2021;51(1):113–124. (In Russ.). https://doi.org/10.21603/2074-9414-2021-1-113-124
- Faulds CB, Collins S, Robertson JA, Treimo J, Eijsink VGH, Hinz SWA, et al. Protease-induced solubilisation of carbohydrates from brewers' spent grain. Journal of Cereal Science. 2009;50(3):332–336. https://doi.org/10.1016/j.jcs.2009.01.004
- Forssell P, Kontkanen H, Schols HA, Hinz S, Eijsink VGH, Treimo J, et al. Hydrolysis of brewers' spent grain by carbohydrate degrading enzymes. Journal of the Institute of Brewing. 2008;114(4):306–314. https://doi.org/10.1002/j.2050-0416.2008.tb00774.x
- Almeida AD, Geraldo MRF, Ribeiro LF, Silva MV, Maciel MVOB, Haminiuk CWI. Bioactive compounds from brewer’s spent grain: Phenolic compounds, fatty acids and in vitro antioxidant capacity. Acta Scientiarum – Technology. 2008;39(3):269–277.
- Farcas AC, Socaci SA, Dulf FV, Tofană M, Mudura E, Diaconeasa Z. Volatile profile, fatty acids composition and total phenolics content of brewers' spent grain by-product with potential use in the development of new functional foods. Journal of Cereal Science. 2015;64:34–42. https://doi.org/10.1016/j.jcs.2015.04.003
- McCarthy AL, O'Callaghan YC, Piggott CO, FitzGerald RJ, O'Brien NM. Brewers' spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: A review. Proceedings of the Nutrition Society. 2013;72(1):117–125. https://doi.org/10.1017/S0029665112002820
- Reddy DHK, Lee S-M, Seshaiah K. Biosorption of toxic heavy metal ions from water environment using honeycomb biomass – An industrial waste material. Water, Air, and Soil Pollution. 2011;223(9):5967–5982. https://doi.org/10.1007/s11270-012-1332-0
- Izinyon OC, Nwosu OE, Akhigbe LO, Ilaboya IR. Performance evaluation of Fe (III) adsorption onto brewers’ spent grain. Nigerian Journal of Technology. 2016;35(4):970–978. https://doi.org/10.4314/njt.v35i4.36
- Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V. Oxidized cellulose – Survey of the most recent achievements. Carbohydrate Polymers. 2013;93(1):207–215. https://doi.org/10.1016/j.carbpol.2012.03.086
- Ma H, Hsiao BS, Chu B. Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water. ACS Macro Letters. 2012;1(1):213–216. https://doi.org/10.1021/mz200047q
- Su Y, Wenzel M, Paasch S, Seifert M, Böhm W, Doert T, et al. Recycling of brewer’s spent grain as a biosorbent by nitro-oxidation for uranyl ion removal from wastewater. ACS Omega. 2021;6(30):19364–19377. https://doi.org/10.1021/acsomega.1c00589
- Samuel AE, Nwankwo IC, Ezebor F, Ojuolape AA. Adsorption of chromium by brewers spent grain -g-poly (acrylic acid-co-acryl amide) from electroplating effluent. African Journal of Pure and Applied Chemistry. 2019;13(5):64–71. https://doi.org/10.5897/AJPAC2017.0734
- Li Q, Chai L, Qin W. Cadmium(II) adsorption on esterified spent grain: Equilibrium modeling and possible mechanisms. Chemical Engineering Journal. 2012;197:173–180. https://doi.org/10.1016/j.cej.2012.04.102
- Chai L, Li Q, Zhu Y, Zhang Z, Wang Q, Wang Y, et al. Synthesis of thiol-functionalized spent grain as a novel adsorbent for divalent metal ions. Bioresource Technology. 2010;101(15):6269–6272. https://doi.org/10.1016/j.biortech.2010.03.009
- Su Y, Böhm W, Wenzel M, Paasch S, Acker M, Doert T, et al. Mild hydrothermally treated brewer’s spent grain for efficient removal of uranyl and rare earth metal ions. RSC Advances. 2020;10(73):45116–45129. https://doi.org/10.1039/D0RA08164G
- Vanreppelen K, Vanderheyden S, Kuppens T, Schreurs S, Yperman J, Carleer R. Activated carbon from pyrolysis of brewer’s spent grain: Production and adsorption properties. Waste Management and Research. 2014;32(7):634–645. https://doi.org/10.1177/0734242X14538306
- Osman AI, O'Connor E, McSpadden G, Abu-Dahrieh JK, Farrell C, Al-Muhtaseb AH, et al. Upcycling brewer's spent grain waste into activated carbon and carbon nanotubes via two-stage activation for energy and other applications. Journal of Chemical Technology and Biotechnology. 2020;95(1):183–195. https://doi.org/10.1002/jctb.6220
- Wierzba S, Kłos A. Heavy metal sorption in biosorbents – Using spent grain from the brewing industry. Journal of Cleaner Production. 2019;225:112–120. https://doi.org/10.1016/j.jclepro.2019.03.286
- Forssell P, Treimo J, Eijsink VGH, Faulds CB, Collins S, Schols HA, et al. Enzyme-aided fractionation of brewer's spent grains in pilot scale. Journal of the American Society of Brewing Chemists. 2011;69(2):91–99. https://doi.org/10.1094/ASBCJ-2011-0408-01
- White JS, Yohannan BK, Walker GM. Bioconversion of brewer's spent grains to bioethanol. FEMS Yeast Research. 2008;8(7):1175–1184. https://doi.org/10.1111/j.1567-1364.2008.00390.x
- Maache-Rezzoug Z, Maugard T, Goude R, Nouviaire A, Sannier F, Rezzoug S-A. A thermomechanical process for improving enzymatic hydrolysis of brewer’s spent grain. 18th International Congress of Chemical and Process Engineering – CHISA’ 2008; 2008; Prague. Prague; 2008.
- Hassan SS, Tiwari BK, Williams GA, Jaiswal AK. Bioprocessing of brewers' spent grain for production of xylanopectinolytic enzymes by Mucor sp. Bioresource Technology Reports. 2020;9. https://doi.org/10.1016/j.biteb.2019.100371
- Bernal-Ruiz M, Correa-Lozano A, Gomez-Sánchez L, Quevedo-Hidalgo B, Rojas-Pérez LC, García-Castillo C, et al. Brewer’s spent grain as substrate for enzyme and reducing sugar production using Penicillium sp. HC1. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales. 2021;45(176):850–863.
- Duarte LC, Carvalheiro F, Lopes S, Marques S, Parajó JC, Gírio FM. Comparison of two posthydrolysis processes of Brewery's spent grain autohydrolysis liquor to produce a pentose-containing culture medium. Applied Biochemistry and Biotechnology – Part A Enzyme Engineering and Biotechnology. 2004;115(1–3):1041–1058. https://doi.org/10.1385/ABAB:115:1-3:1041
- Abdel-Rahman MA, Hassan SE-D, Fouda A, Radwan AA, Barghoth MG, Desouky SG. Evaluating the effect of lignocellulose-derived microbial inhibitors on the growth and lactic acid production by Bacillus coagulans Azu-10. Fermentation. 2021;7(1). https://doi.org/10.3390/fermentation7010017
- Macheiner D, Adamitsch BF, Karner F, Hampel WA. Pretreatment and hydrolysis of brewer's spent grains. Engineering in Life Sciences. 2003;3(10):401–405. https://doi.org/10.1002/elsc.200301831
- Knob A, Terrasan CRF, Carmona EC. β-Xylosidases from filamentous fungi: An overview. World Journal of Microbiology and Biotechnology. 2010;26(3):389–407. https://doi.org/10.1007/s11274-009-0190-4
- Gusmão RO, Solidade LS, Ferreira LFAA, de Assis FGDV, Da Cruz AR, Leal PL. Filamentous fungi producing enzymes under fermentation in cassava liquid waste. Acta Scientiarum – Biological Sciences. 2018;40(1). https://doi.org/10.4025/actascibiolsci.v40i1.41512
- Li Y, Yan P, Lu X, Qiu Y, Liang S, Liu G, et al. Involvement of PaSNF1 in Fungal Development, Sterigmatocystin Biosynthesis, and Lignocellulosic Degradation in the Filamentous Fungus Podospora anserina. Frontiers in Microbiology. 2020;11. https://doi.org/10.3389/fmicb.2020.01038
- Lynch KM, Strain CR, Johnson C, Patangia D, Stanton C, Koc F, et al. Extraction and characterisation of arabinoxylan from brewers spent grain and investigation of microbiome modulation potential. European Journal of Nutrition. 2021;60(8):4393–4411. https://doi.org/10.1007/s00394-021-02570-8
- Reis SF, Coelho E, Coimbra MA, Abu-Ghannam N. Improved efficiency of brewer’s spent grain arabinoxylans by ultrasound-assisted extraction. Ultrasonics Sonochemistry. 2015;24:155–164. https://doi.org/10.1016/j.ultsonch.2014.10.010
- Parchami M, Ferreira JA, Taherzadeh MJ. Starch and protein recovery from brewer’s spent grain using hydrothermal pretreatment and their conversion to edible filamentous fungi – A brewery biorefinery concept. Bioresource Technology. 2021;337. https://doi.org/10.1016/j.biortech.2021.125409
- Coelho E, Rocha MAM, Saraiva JA, Coimbra MA. Microwave superheated water and dilute alkali extraction of brewers' spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydrate Polymers. 2014;99:415–422. https://doi.org/10.1016/j.carbpol.2013.09.003
- Mendez DA, Marti E, Puyuelo B, Colon J, Ponsa S. Evaluation of pre-treatments of brewery’s spent grain for growing bacteria in the production of polyhydroxyalkanoates. Chemical Engineering Transactions. 2018;65:403–408. https://doi.org/10.3303/CET1865068
- Mishtra PK, Gregor T, Wimmer R. Utilising brewer’s spent grain as a source of cellulose nanofibres following separation of protein-based biomass. BioResources. 2017;12(1):107–116.
- Martínez-Encinas EG, Carvajal-Millán E, Calderón de la Barca AM, Rascón-Chu A, Martínez-Porchas M, Márquez-Escalante JA, et al. Extraction and characterization of arabinoxylans obtained from nixtamalized brewers’ spent grains. Food Science and Technology International. 2021;9. https://doi.org/10.1177/10820132211060609
- Reis SF, Coelho E, Coimbra MA, Abu-Ghannam N. Improved efficiency of brewer’s spent grain arabinoxylans by ultrasound-assisted extraction. Ultrasonics Sonochemistry. 2015;24:155–164. https://doi.org/10.1016/j.ultsonch.2014.10.010
- Vieira E, Rocha MAM, Coelho E, Pinho O, Saraiva JA, Ferreira IMPLVO, et al. Valuation of brewer's spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans. Industrial Crops and Products. 2014;52:136–143. https://doi.org/10.1016/j.indcrop.2013.10.012
- Coelho E, Rocha MAM, Moreira ASP, Domingues MRM, Coimbra MA. Revisiting the structural features of arabinoxylans from brewers’ spent grain. Carbohydrate Polymers. 2016;139:167–176. https://doi.org/10.1016/j.carbpol.2015.12.006
- Abdi R, Joye IJ. Prebiotic potential of cereal components. Foods. 2021;10(10). https://doi.org/10.3390/foods10102338
- Pires EJ, Ruiz HA, Teixeira JA, Vicente AA. A new approach on brewer’s spent grains treatment and potential use as lignocellulosic yeast cells carriers. Journal of Agricultural and Food Chemistry. 2012;60(23):5994–5999. https://doi.org/10.1021/jf300299m
- Kumari B, Tiwari BK, Walsh D, Griffin TP, Islam N, Lyng JG, et al. Impact of pulsed electric field pre-treatment on nutritional and polyphenolic contents and bioactivities of light and dark brewer's spent grains. Innovative Food Science and Emerging Technologies. 2019;54:200–210. https://doi.org/10.1016/j.ifset.2019.04.012
- Wu J, Magrakvelidze M, Schmidt LPH, Kunitski M, Pfeifer T, Schöffler M, et al. Understanding the role of phase in chemical bond breaking with coincidence angular streaking. Nature Communications. 2013;4. https://doi.org/10.1038/ncomms3177
- Torres-Mayanga PC, Azambuja SPH, Tyufekchiev M, Tompsett GA, Timko MT, Goldbeck R, et al. Subcritical water hydrolysis of brewer’s spent grains: Selective production of hemicellulosic sugars (C-5 sugars). Journal of Supercritical Fluids. 2019;145:19–30. https://doi.org/10.1016/j.supflu.2018.11.019
- Gernet MV, Zakharov MA, Gribkova IN. The antioxidant compounds determination of various brewer's spent grain extracts. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry. 2020;21(2):263–270.
- Meneses NGT, Martins S, Teixeira JA, Mussatto SI. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation and Purification Technology. 2013;108:152–158. https://doi.org/10.1016/j.seppur.2013.02.015
- Апаева А. В., Ямансарова Э. Т., Куковинец О. С. Исследование экстракции флавоноидов из плодовых оболочек гречихи в различных условиях // Вестник Башкирского университета. 2015. Т. 20. № 4. С. 1223–1226.
- Kochetova MV, Semenistaya EN, Larionov OG, Revina AA. The biologically active phenols and polyphenols determination in various objects by chromatography methods. Russian Chemical Reviews. 2007;76(1):79–90. https://doi.org/10.1070/RC2007v076n01ABEH003632
- Тухтаев Х. Р., Зарипова Р. Ш., Ёдгоров М. Ф. Количественная оценка качества сухого экстракта шалфея, полученного в присутствии поверхностно-активных веществ // Farmatsevtika jurnali. 2017. № 2. С. 112–116.
- Переверткина И. В., Волков А. Д., Болотов В. М. Влияние глицерина на экстрагирование антоциановых пигментов из растительного сырья // Химия растительного сырья. 2011. № 2. С. 187–188.
- Wahlström R, Rommi K, Willberg-Keyriläinen P, Ercili-Cura D, Holopainen-Mantila U, Hiltunen J, et al. High yield protein extraction from brewer's spent grain with novel carboxylate salt – urea aqueous deep eutectic solvents. ChemistrySelect. 2017;2(29):9355–9363. https://doi.org/10.1002/slct.201701492
- Ikram S, Huang LY, Zhang H, Wang J, Yin M. Composition and nutrient value proposition of brewers spent grain. Journal of Food Science. 2017;82(10):2232–2242. https://doi.org/10.1111/1750-3841.13794
- Li W, Yang H, Coldea TE, Zhao H. Modification of structural and functional characteristics of brewer's spent grain protein by ultrasound assisted extraction. LWT. 2021;139. https://doi.org/10.1016/j.lwt.2020.110582
- Chin YL, Chai KF, Chen WN. Upcycling of brewers' spent grains via solid-state fermentation for the production of protein hydrolysates with antioxidant and techno-functional properties. Food Chemistry: X. 2021;13. https://doi.org/10.1016/j.fochx.2021.100184
- Celus I, Brijs K, Delcour JA. Enzymatic hydrolysis of Brewers’ spent grain proteins and technofunctional properties of the resulting hydrolysates. Journal of Agricultural and Food Chemistry. 2007;55(21):8703–8710. https://doi.org/10.1021/jf071793c
- Connolly A, Piggott CO, Fitzgerald RJ. Characterization of protein-rich isolates and antioxidant phenolic extracts from pale and black spent grain brewers. International Journal of Food Science and Technology. 2013;48(8):1670–1681.
- Kramer RM, Shende VR, Motl N, Pace CN, Scholtz JM. Toward a molecular understanding of protein solubility: increased negative surface charge correlates with increased solubility. Biophysical Journal. 2012;102(8):1907–1915. https://doi.org/10.1016/j.bpj.2012.01.060
- Qin F, Johansen AZ, Mussatto SI. Evaluation of different pretreatment strategies for protein extraction from brewer’s spent grains. Industrial Crops and Products. 2018;125:443–453. https://doi.org/10.1016/j.indcrop.2018.09.017
- Treimo J, Aspmo SI, Eijsink VGH, Horn SJ. Enzymatic solubilization of proteins in Brewer’s spent grain. Journal of Agricultural and Food Chemistry. 2008;56(12):5359–5365. https://doi.org/10.1021/jf073317s
- Essien JP, Udotong IR. Amino acid profile of biodegraded brewers spent grains (BSG). Journal of Applied Sciences and Environmental Management. 2008;12(1):109–111. https://doi.org/10.4314/jasem.v12i1.55582
- Barbosa C, García-Martínez J, Pérez-Ortín JE, Mendes-Ferreira A. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability. PLoS ONE. 2015;10(4). https://doi.org/10.1371/journal.pone.0122709
- Cermeño M, Connolly A, O'Keeffe MB, Flynn C, Alashi AM, Aluko RE, et al. Identification of bioactive peptides from brewers' spent grain and contribution of Leu/Ile to bioactive potency. Journal of Functional Foods. 2019;60. https://doi.org/10.1016/j.jff.2019.103455
- Nongonierma AB, FitzGerald RJ. Features of dipeptidyl peptidase IV (DPP‐IV) inhibitory peptides from dietary proteins. Journal of Food Biochemistry. 2019;43(1). https://doi.org/10.1111/jfbc.12451
- Ma F-F, Wang H, Wei C-K, Thakur K, Wei Z-J, Jiang L. Three novel ACE inhibitory peptides isolated from Ginkgo biloba seeds: Purification, inhibitory kinetic and mechanism. Frontiers in Pharmacology. 2019;9. https://doi.org/10.3389/fphar.2018.01579
- Tang D-S, Yin G-M, He Y-Z, Hu S-Q, Li B, Li L, et al. Recovery of protein from brewer's spent grain by ultrafiltration. Biochemical Engineering Journal. 2009;48(1):1–5. https://doi.org/10.1016/j.bej.2009.05.019
- Jaeger A, Zannini E, Sahin AW, Arendt EK. Barley protein properties, extraction and applications, with a focus on brewers’ spent grain protein. Foods. 2021;10(6). https://doi.org/10.3390/foods10061389
- Tang D-S, Tian Y-J, He Y-Z, Li L, Hu S-Q, Li B. Optimisation of ultrasonic-assisted protein extraction from brewer’s spent grain. Czech Journal of Food Sciences. 2010;28(1):9–17. https://doi.org/10.17221/178/2009-cjfs
- Macias-Garbett R, Serna-Hernández SO, Sosa-Hernández JE, Parra-Saldívar R. Phenolic compounds from brewer’s spent grains: toward green recovery methods and applications in the cosmetic industry. Frontiers in Sustainable Food Systems. 2021;5. https://doi.org/10.3389/fsufs.2021.681684
- Zuorro A, Iannone A, Lavecchia R. Water-organic solvent extraction of phenolic antioxidants from brewers’ spent grain. Processes. 2019;7(3). https://doi.org/10.3390/pr7030126
- Andres AI, Petron MJ, Lopez AM, Timon ML. Optimization of extraction conditions to improve phenolic content and in vitro antioxidant activity in craft brewers’ spent grain using Response Surface Methodology (RSM). Foods. 2020;9(10). https://doi.org/10.3390/foods9101398
- Birsan RI, Wilde P, Waldron KW, Rai DK. Recovery of polyphenols from brewer's spent grains. Antioxidants. 2019;8(9). https://doi.org/10.3390/antiox8090380
- Bonifácio-Lopes T, Vilas Boas AA, Coscueta ER, Costa EM, Silva S, Campos D, et al. Bioactive extracts from brewer's spent grain. Food and Function. 2020;11(10):8963–8977. https://doi.org/10.1039/D0FO01426E
- Lemańska K, Szymusiak H, Tyrakowska B, Zieliński R, Soffers AEMF, Rietjens IMCM. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radical Biology and Medicine. 2001;31(7):869–881. https://doi.org/10.1016/S0891-5849(01)00638-4
- Honda S, Ishida R, Hidaka K, Masuda T. Stability of polyphenols under alkaline conditions and the formation of a xanthine oxidase inhibitor from gallic acid in a solution at pH 7.4. Food Science and Technology Research. 2019;25(1):123–129. https://doi.org/10.3136/fstr.25.123
- Friedman M, Jürgens HS. Effect of pH on the stability of plant phenolic compounds. Journal of Agricultural and Food Chemistry. 2000;48(6):2101–2110. https://doi.org/10.1021/jf990489
- Zeng L, Ma M, Li C, Luo L. Stability of tea polyphenols solution with different pH at different temperatures. International Journal of Food Properties. 2017;20(1):1–18. https://doi.org/10.1080/10942912.2014.983605
- Zhou X, Iqbal A, Li J, Liu C, Murtaza A, Xu X, et al. Changes in browning degree and reducibility of polyphenols during autoxidation and enzymatic oxidation. Antioxidants. 2021;10(11). https://doi.org/10.3390/antiox10111809
- Hernanz D, Nuñez V, Sancho AI, Faulds CB, Williamson G, Bartolomé B, et al. Hydroxycinnamic acids and ferulic acid dehydrodimers in barley and processed barley. Journal of Agricultural and Food Chemistry. 2001;49(10):4884–4888. https://doi.org/10.1021/jf010530u
- Bartolomé B, Santos M, Jimeénez JJ, Del Nozal MJ, Gomez-Cordoveés C. Pentoses and hydroxycinnamic acids in brewer’s spent grain. Journal of Cereal Science. 2002;36(1):51–58. https://doi.org/10.1006/jcrs.2002.0442
- Mandalari G, Faulds C, Sancho AI, Saija A, Bisignano G, Locurto R, et al. Fractionation and characterisation of arabinoxylans from brewers’ spent grain and wheat bran. Journal of Cereal Science. 2005;42(2):205–212. https://doi.org/10.1016/j.jcs.2005.03.001
- Mussatto SI, Dragone G, Roberto IC. Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer’s spent grain. Industrial Crops and Products. 2007;25(2):231–237. https://doi.org/10.1016/j.indcrop.2006.11.001
- Jay AJ, Parker ML, Faulks R, Husband F, Wilde P, Smith AC, et al. A systematic micro-dissection of brewers’ spent grain. Journal of Cereal Science. 2008;47(2):357–364. https://doi.org/10.1016/j.jcs.2007.05.006
- McCarthy AL, O'Callaghan YC, Connolly A, Piggott CO, Fitzgerald RJ, O'Brien NM. Phenolic extracts of brewers’ spent grain (BSG) as functional ingredients – Assessment of their DNA protective effect against oxidant-induced DNA single strand breaks in U937 cells. Food Chemistry. 2012;134(2):641–646. https://doi.org/10.1016/j.foodchem.2012.02.133
- Reis SF, Abu-Ghannam N. Antioxidant capacity, arabinoxylans content and in vitro glycaemic index of cereal-based snacks incorporated with brewer’s spent grain. LWT – Food Science and Technology. 2014;55(1):269–277. https://doi.org/10.1016/j.lwt.2013.09.004
- Stefanello FS, dos Santos CO, Bochi VC, Fruet APB, Soquetta MB, Dörr AC, et al. Analysis of polyphenols in brewer’s spent grain and its comparison with corn silage and cereal brans commonly used for animal nutrition. Food Chemistry. 2018;239:385–401. https://doi.org/10.1016/j.foodchem.2017.06.130
- Ideia P, Sousa-Ferreira I, Castilho PC. A novel and simpler alkaline hydrolysis methodology for extraction of ferulic acid from brewer’s spent grain and its (partial) purification through adsorption in a synthetic resin. Foods. 2020;9(5). https://doi.org/10.3390/foods9050600
- Tišma M, Jurić A, Bucić-Kojić A, Panjičko M, Planinić M. Biovalorization of brewers’ spent grain for the production of laccase and polyphenols. Journal of the Institute of Brewing. 2018;124(2):182–186. https://doi.org/10.1002/jib.479
- Leite P, Silva C, Salgado JM, Belo I. Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Industrial Crops and Products. 2019;137:315–322. https://doi.org/10.1016/j.indcrop.2019.04.044
- Tan YX, Mok WK, Lee J, Kim J, Chen WN. Solid state fermentation of Brewers’ spent grains for improved nutritional profile using Bacillus subtilis WX-17. Fermentation. 2019;5(3). https://doi.org/10.3390/fermentation5030052
- da Costa Maia I, Thomaz dos Santos D'Almeida C, Guimarães Freire DM, d'Avila Costa Cavalcanti E, Cameron LC, Furtado Dias F, et al. Effect of solid-state fermentation over the release of phenolic compounds from brewer's spent grain revealed by UPLC-MSE. LWT. 2020;133. https://doi.org/10.1016/j.lwt.2020.110136
- Forssell P, Kontkanen H, Schols HA, Hinz S, Eijsink VGH, Treimo J, et al. Hydrolysis of brewers’ spent grain by carobohydrate degrading enzymes. Journal of the Institute of Brewing. 2008;114(4):306–314. https://doi.org/10.1002/j.2050-0416.2008.tb00774.x
- Szwajgier D, Targoński Z. Release of free ferulic acid and feruloylated arabinoxylans from brewery’s spent grain by commercial enzyme preparations. EJPAU. 2006;9(1).
- Alonso-Riaño P, Diez MTS, Blanco B, Beltrán S, Trigueros E, Benito-Román O. Water ultrasound-assisted extraction of polyphenol compounds from brewer's spent grain: Kinetic study, extract characterization, and concentration. Antioxidants. 2020;9(3). https://doi.org/10.3390/antiox9030265
- Chetrariu A, Dabija A. Spent grain from malt whisky: Assessment of the phenolic compounds. Molecules. 2021;26(11). https://doi.org/10.3390/molecules26113236
- Herbst G, Hamerski F, Errico M, Corazza ML. Pressurized liquid extraction of brewer’s spent grain: Kinetics and crude extracts characterization. Journal of Industrial and Engineering Chemistry. 2021;102:370–383. https://doi.org/10.1016/j.jiec.2021.07.020
- Smeds AI, Eklund PC, Sjöholm RE, Willför SM, Nishibe S, Deyama T, et al. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. Journal of Agricultural and Food Chemistry. 2007;55(4):1337–1346. https://doi.org/10.1021/jf0629134
- Holtekjølen AK, Kinitz C, Knutsen SH. Flavanol and bound phenolic acid contents in different barley varieties. Journal of Agricultural and Food Chemistry. 2006;54(6):2253–2260. https://doi.org/10.1021/jf052394p
- He R, Wu K, Zhang A, Xie Z, Sun P. Mechanochemical-assisted extraction and pharmacological study of triterpenoids from Antrodia camphorata. Applied Sciences. 2019;9(20). https://doi.org/10.3390/app9204281
- de Oliveira AA, Torres AG, Perrone D, Monteiro M. Effect of high hydrostatic pressure processing on the anthocyanins content, antioxidant activity, sensorial acceptance and stability of jussara (Euterpe edulis) juice. Foods. 2021;10(10). https://doi.org/10.3390/foods10102246
- Uribe E, Delgadillo A, Giovagnoli-Vicunã C, Quispe-Fuentes I, Zura-Bravo L. Extraction techniques for bioactive compounds and antioxidant capacity determination of chilean papaya (Vasconcellea pubescens) fruit. Journal of Chemistry. 2015;2015. https://doi.org/10.1155/2015/347532
- Spinelli S, Conte A, Lecce L, Padalino L, Del Nobile MA. Supercritical carbon dioxide extraction of brewer's spent grain. Journal of Supercritical Fluids. 2015;107:69–74. https://doi.org/10.1016/j.supflu.2015.08.017
- Ferrentino G, Ndayishimiye J, Haman N, Scampicchio M. Functional activity of oils from brewer’s spent grain extracted by supercritical carbon dioxide. Food and Bioprocess Technology. 2019;12(5):789–798. https://doi.org/10.1007/s11947-019-02249-3
- López-Linares JC, Campillo V, Coca M, Lucas S, García-Cubero MT, et al. Microwave-assisted deep eutectic solvent extraction of phenolic compounds from brewer's spent grain. Journal of Chemical Technology and Biotechnology. 2021;96(2):481–490. https://doi.org/10.1002/jctb.6565
- Moreira MM, Morais S, Barros AA, Delerue-Matos C, Guido LF. A novel application of microwave-assisted extraction of polyphenols from brewer's spent grain with HPLC-DAD-MS analysis. Analytical and Bioanalytical Chemistry. 2012;403(4):1019–1029. https://doi.org/10.1007/s00216-011-5703-y
- Martín-García B, Tylewicz U, Verardo V, Pasini F, Gómez-Caravaca AM, Caboni MF, et al. Pulsed electric field (PEF) as pre-treatment to improve the phenolic compounds recovery from brewers' spent grains. Innovative Food Science and Emerging Technologies. 2020;64. https://doi.org/10.1016/j.ifset.2020.102402
- Redondo D, Venturini ME, Luengo E, Raso J, Arias E. Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innovative Food Science and Emerging Technologies. 2018;45:335–343. https://doi.org/10.1016/j.ifset.2017.12.004
- Tzima K, Brunton NP, Lyng JG, Frontuto D, Rai DK. The effect of Pulsed Electric Field as a pre-treatment step in Ultrasound Assisted Extraction of phenolic compounds from fresh rosemary and thyme by-products. Innovative Food Science and Emerging Technologies. 2021;69. https://doi.org/10.1016/j.ifset.2021.102644
- Eder R, Mappala H. The role of tocotrienols in the treatment of non-alcoholic steatohepatitis- a meta-analysis. Gut. 2019;68:A144. https://doi.org/10.1136/gutjnl-2019-IDDFabstracts.280
- Thavasiappan V, Nanjappan K, Ezakial Napolean R, Visha P, Selvaraj P, Doraisamy KA. Fatty acid profile of wet brewer’s spent grain. International Journal of Science, Environment and Technology. 2016;5(4):2516–2521.
- Zárate R, el Jaber-Vazdekis N, Tejera N, Pérez JA, Rodríguez C. Significance of long chain polyunsaturated fatty acids in human health. Clinical and Translational Medicine. 2017;6(1). https://doi.org/10.1186/s40169-017-0153-6
- del Río JC, Prinsen P, Gutiérrez A. Chemical composition of lipids in brewer’s spent grain: A promising source of valuable phytochemicals. Journal of Cereal Science. 2013;58(2):248–254. https://doi.org/10.1016/j.jcs.2013.07.001
- Bohnsack C, Ternes W, Büsing A, Drotleff AM. Tocotrienol levels in sieving fraction extracts of brewer’s spent grain. European Food Research and Technology. 2011;232(4):563–573. https://doi.org/10.1007/s00217-010-1419-z
- Phelan A, Meissner K, Humphrey J, Ross H. Plastic pollution and packaging: Corporate commitments and actions from the food and beverage sector. Journal of Cleaner Production. 2022;331. https://doi.org/10.1016/j.jclepro.2021.129827
- Moreirinha C, Vilela C, Silva NHCS, Pinto RJB, Almeida A, Rocha MAM, et al. Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and feruloylated compounds for active packaging. Food Hydrocolloids. 2020;108. https://doi.org/10.1016/j.foodhyd.2020.105836
- Ferreira AM, Martins J, Carvalho LH, Magalhães FD. Biosourced disposable trays made of brewer’s spent grain and potato starch. Polymers. 2019;11(5). https://doi.org/10.3390/polym11050923