ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Анализ возможностей извлечения органических соединений пивной дробины различными способами

Аннотация
Пивная дробина является отходом пивоваренного производства и содержит в себе ценные биологически активные вещества, извлечение которых затруднено из-за присутствия различных полимеров, осложняющих экстракцию. Проведен анализ возможности извлечения полезных органических соединений инновационными способами глубокой переработки, в том числе экологичными, разрушающими внутренние структуры матрицы растительного сырья. Целью работы являлось исследование аналитических источников в отношении переработки пивной дробины как источника вторичных сырьевых ресурсов для получения органических соединений растительной матрицы различными методами в условиях развивающихся научных подходов, что решает актуальные вопросы экологизации пивоваренной промышленности.
Изучалась зарубежная и отечественная аналитическая база научно-технической литературы за последние 5–10 лет (Scopus, Web of Science, RSCI и ВАК) по изучению структуры дробины и методов извлечения органических соединений различной природы с применением методов анализа и обобщения данных.
Наряду с классическими способами переработки дробины (кислотная, щелочная и ферментативная) были приведены физические и механические способы переработки, направленные на извлечение биогенных пептидов, фенольных соединений и жирных кислот. Показано, что характер обработки зависит от вида извлекаемого соединения. Для извлечения редуцирующих соединений, предназначенных для сорбции, наиболее эффективно воздействие высоких температур (выше 150 °С). Комбинированная обработка кислотами или щелочами целлюлозо-лигниного комплекса позволяет добиться выхода 76,2 % гемицеллюлоз. Кислотный гидролиз арабиноксиланов эффективен при температурах 120–160 °С. Щелочной совместно с физической обработкой позволяет достичь 60 % арабиноксиланов в смеси с фенольными соединениями. При извлечении азотосодержащих, фенольных и липидных соединений наибольшее значение имеет степень измельчения биоматериала и органический растворитель, позволяющие добиться сохранения пространственной структуры и высокого выхода (до 86 %) полезного органического соединения. Показано применение ультрафильтрации, которая позволяет сконцентрировать выделяемое биогенное соединение с сохранением его активности с выходом до 95 %.
Проведенный анализ позволил сделать заключение о перспективности переработки пивной дробины экологичными способами, позволяющими достичь высокой степени выхода и чистоты получаемых органических соединений, что актуально для получения биоактивных соединений (пептиды, фенольные соединения, жирные кислоты).
Ключевые слова
Зерновая дробина, экологизация, биогенные пептиды, фенольные соединения, целлюлоза, гемицеллюлоза, физико-химические методы, инновационные технологии
СПИСОК ЛИТЕРАТУРЫ
  1. Shen Y, Abeynayake R, Sun X, Ran T, Li J, Chen L, et al. Feed nutritional value of brewers’ spent grain residue resulting from protease aided protein removal. Journal of Animal Science and Biotechnology. 2019;10(1). https://doi.org/10.1186/s40104-019-0382-1
  2. Tang D-S, Yin G-M, He Y-Z, Hu S-Q, Li B, Li L, et al. Recovery of protein from brewer's spent grain by ultrafiltration. Biochemical Engineering Journal. 2009;48(1):1–5. https://doi.org/10.1016/j.bej.2009.05.019
  3. Lynch KM, Steffen EJ, Arendt EK. Brewers' spent grain: a review with an emphasis on food and health. Journal of the Institute of Brewing. 2016;122(4):553–568. https://doi.org/10.1002/jib.363
  4. Verni M, Pontonio E, Krona A, Jacob S, Pinto D, Rinaldi F, et al. Bioprocessing of brewers’ spent grain enhances its antioxidant activity: Characterization of phenolic compounds and bioactive peptides. Frontiers in Microbiology. 2020;11. https://doi.org/10.3389/fmicb.2020.01831
  5. Santos M, Jiménez JJ, Bartolomé B, Gómez-Cordovés C, Del Nozal MJ. Variability of brewer’s spent grain within a brewery. Food Chemistry. 2003;80(1):17–21. https://doi.org/10.1016/S0308-8146(02)00229-7
  6. Mussatto SI, Roberto IC. Chemical characterization and liberation of pentose sugars from brewer’s spent grain. Journal of Chemical Technology and Biotechnology. 2006;81(3):268–274. https://doi.org/10.1002/jctb.1374
  7. Waters DM, Jacob F, Titze J, Arendt EK, Zannini E. Fibre, protein and mineral fortification of wheat bread through milled and fermented brewer’s spent grain enrichment. European Food Research and Technology. 2012;235(5):767–778. https://doi.org/10.1007/s00217-012-1805-9
  8. Kanauchi O, Mitsuyama K, Araki Y. Development of a functional germinated barley foodstuff from brewer’s spent grain for the treatment of ulcerative colitis. Journal of the American Society of Brewing Chemists. 2001;59(2):59–62.
  9. Carvalheiro F, Esteves MP, Parajó JC, Pereira H, Gírio FM. Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresource Technology. 2004;91(1):93–100. https://doi.org/10.1016/S0960-8524(03)00148-2
  10. Verni M, Verardo V, Rizzello CG. How fermentation affects the antioxidant properties of cereals and legumes. Foods. 2019;8(9). https://doi.org/10.3390/foods8090362
  11. Kobelev KV, Gernet MV, Gribkova IN. Innovative method for obtaining biologically active compounds from brewery mash. Food Processing: Techniques and Technology. 2021;51(1):113–124. (In Russ.). https://doi.org/10.21603/2074-9414-2021-1-113-124
  12. Faulds CB, Collins S, Robertson JA, Treimo J, Eijsink VGH, Hinz SWA, et al. Protease-induced solubilisation of carbohydrates from brewers' spent grain. Journal of Cereal Science. 2009;50(3):332–336. https://doi.org/10.1016/j.jcs.2009.01.004
  13. Forssell P, Kontkanen H, Schols HA, Hinz S, Eijsink VGH, Treimo J, et al. Hydrolysis of brewers' spent grain by carbohydrate degrading enzymes. Journal of the Institute of Brewing. 2008;114(4):306–314. https://doi.org/10.1002/j.2050-0416.2008.tb00774.x
  14. Almeida AD, Geraldo MRF, Ribeiro LF, Silva MV, Maciel MVOB, Haminiuk CWI. Bioactive compounds from brewer’s spent grain: Phenolic compounds, fatty acids and in vitro antioxidant capacity. Acta Scientiarum – Technology. 2008;39(3):269–277.
  15. Farcas AC, Socaci SA, Dulf FV, Tofană M, Mudura E, Diaconeasa Z. Volatile profile, fatty acids composition and total phenolics content of brewers' spent grain by-product with potential use in the development of new functional foods. Journal of Cereal Science. 2015;64:34–42. https://doi.org/10.1016/j.jcs.2015.04.003
  16. McCarthy AL, O'Callaghan YC, Piggott CO, FitzGerald RJ, O'Brien NM. Brewers' spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: A review. Proceedings of the Nutrition Society. 2013;72(1):117–125. https://doi.org/10.1017/S0029665112002820
  17. Reddy DHK, Lee S-M, Seshaiah K. Biosorption of toxic heavy metal ions from water environment using honeycomb biomass – An industrial waste material. Water, Air, and Soil Pollution. 2011;223(9):5967–5982. https://doi.org/10.1007/s11270-012-1332-0
  18. Izinyon OC, Nwosu OE, Akhigbe LO, Ilaboya IR. Performance evaluation of Fe (III) adsorption onto brewers’ spent grain. Nigerian Journal of Technology. 2016;35(4):970–978. https://doi.org/10.4314/njt.v35i4.36
  19. Coseri S, Biliuta G, Simionescu BC, Stana-Kleinschek K, Ribitsch V, Harabagiu V. Oxidized cellulose – Survey of the most recent achievements. Carbohydrate Polymers. 2013;93(1):207–215. https://doi.org/10.1016/j.carbpol.2012.03.086
  20. Ma H, Hsiao BS, Chu B. Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water. ACS Macro Letters. 2012;1(1):213–216. https://doi.org/10.1021/mz200047q
  21. Su Y, Wenzel M, Paasch S, Seifert M, Böhm W, Doert T, et al. Recycling of brewer’s spent grain as a biosorbent by nitro-oxidation for uranyl ion removal from wastewater. ACS Omega. 2021;6(30):19364–19377. https://doi.org/10.1021/acsomega.1c00589
  22. Samuel AE, Nwankwo IC, Ezebor F, Ojuolape AA. Adsorption of chromium by brewers spent grain -g-poly (acrylic acid-co-acryl amide) from electroplating effluent. African Journal of Pure and Applied Chemistry. 2019;13(5):64–71. https://doi.org/10.5897/AJPAC2017.0734
  23. Li Q, Chai L, Qin W. Cadmium(II) adsorption on esterified spent grain: Equilibrium modeling and possible mechanisms. Chemical Engineering Journal. 2012;197:173–180. https://doi.org/10.1016/j.cej.2012.04.102
  24. Chai L, Li Q, Zhu Y, Zhang Z, Wang Q, Wang Y, et al. Synthesis of thiol-functionalized spent grain as a novel adsorbent for divalent metal ions. Bioresource Technology. 2010;101(15):6269–6272. https://doi.org/10.1016/j.biortech.2010.03.009
  25. Su Y, Böhm W, Wenzel M, Paasch S, Acker M, Doert T, et al. Mild hydrothermally treated brewer’s spent grain for efficient removal of uranyl and rare earth metal ions. RSC Advances. 2020;10(73):45116–45129. https://doi.org/10.1039/D0RA08164G
  26. Vanreppelen K, Vanderheyden S, Kuppens T, Schreurs S, Yperman J, Carleer R. Activated carbon from pyrolysis of brewer’s spent grain: Production and adsorption properties. Waste Management and Research. 2014;32(7):634–645. https://doi.org/10.1177/0734242X14538306
  27. Osman AI, O'Connor E, McSpadden G, Abu-Dahrieh JK, Farrell C, Al-Muhtaseb AH, et al. Upcycling brewer's spent grain waste into activated carbon and carbon nanotubes via two-stage activation for energy and other applications. Journal of Chemical Technology and Biotechnology. 2020;95(1):183–195. https://doi.org/10.1002/jctb.6220
  28. Wierzba S, Kłos A. Heavy metal sorption in biosorbents – Using spent grain from the brewing industry. Journal of Cleaner Production. 2019;225:112–120. https://doi.org/10.1016/j.jclepro.2019.03.286
  29. Forssell P, Treimo J, Eijsink VGH, Faulds CB, Collins S, Schols HA, et al. Enzyme-aided fractionation of brewer's spent grains in pilot scale. Journal of the American Society of Brewing Chemists. 2011;69(2):91–99. https://doi.org/10.1094/ASBCJ-2011-0408-01
  30. White JS, Yohannan BK, Walker GM. Bioconversion of brewer's spent grains to bioethanol. FEMS Yeast Research. 2008;8(7):1175–1184. https://doi.org/10.1111/j.1567-1364.2008.00390.x
  31. Maache-Rezzoug Z, Maugard T, Goude R, Nouviaire A, Sannier F, Rezzoug S-A. A thermomechanical process for improving enzymatic hydrolysis of brewer’s spent grain. 18th International Congress of Chemical and Process Engineering – CHISA’ 2008; 2008; Prague. Prague; 2008.
  32. Hassan SS, Tiwari BK, Williams GA, Jaiswal AK. Bioprocessing of brewers' spent grain for production of xylanopectinolytic enzymes by Mucor sp. Bioresource Technology Reports. 2020;9. https://doi.org/10.1016/j.biteb.2019.100371
  33. Bernal-Ruiz M, Correa-Lozano A, Gomez-Sánchez L, Quevedo-Hidalgo B, Rojas-Pérez LC, García-Castillo C, et al. Brewer’s spent grain as substrate for enzyme and reducing sugar production using Penicillium sp. HC1. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales. 2021;45(176):850–863.
  34. Duarte LC, Carvalheiro F, Lopes S, Marques S, Parajó JC, Gírio FM. Comparison of two posthydrolysis processes of Brewery's spent grain autohydrolysis liquor to produce a pentose-containing culture medium. Applied Biochemistry and Biotechnology – Part A Enzyme Engineering and Biotechnology. 2004;115(1–3):1041–1058. https://doi.org/10.1385/ABAB:115:1-3:1041
  35. Abdel-Rahman MA, Hassan SE-D, Fouda A, Radwan AA, Barghoth MG, Desouky SG. Evaluating the effect of lignocellulose-derived microbial inhibitors on the growth and lactic acid production by Bacillus coagulans Azu-10. Fermentation. 2021;7(1). https://doi.org/10.3390/fermentation7010017
  36. Macheiner D, Adamitsch BF, Karner F, Hampel WA. Pretreatment and hydrolysis of brewer's spent grains. Engineering in Life Sciences. 2003;3(10):401–405. https://doi.org/10.1002/elsc.200301831
  37. Knob A, Terrasan CRF, Carmona EC. β-Xylosidases from filamentous fungi: An overview. World Journal of Microbiology and Biotechnology. 2010;26(3):389–407. https://doi.org/10.1007/s11274-009-0190-4
  38. Gusmão RO, Solidade LS, Ferreira LFAA, de Assis FGDV, Da Cruz AR, Leal PL. Filamentous fungi producing enzymes under fermentation in cassava liquid waste. Acta Scientiarum – Biological Sciences. 2018;40(1). https://doi.org/10.4025/actascibiolsci.v40i1.41512
  39. Li Y, Yan P, Lu X, Qiu Y, Liang S, Liu G, et al. Involvement of PaSNF1 in Fungal Development, Sterigmatocystin Biosynthesis, and Lignocellulosic Degradation in the Filamentous Fungus Podospora anserina. Frontiers in Microbiology. 2020;11. https://doi.org/10.3389/fmicb.2020.01038
  40. Lynch KM, Strain CR, Johnson C, Patangia D, Stanton C, Koc F, et al. Extraction and characterisation of arabinoxylan from brewers spent grain and investigation of microbiome modulation potential. European Journal of Nutrition. 2021;60(8):4393–4411. https://doi.org/10.1007/s00394-021-02570-8
  41. Reis SF, Coelho E, Coimbra MA, Abu-Ghannam N. Improved efficiency of brewer’s spent grain arabinoxylans by ultrasound-assisted extraction. Ultrasonics Sonochemistry. 2015;24:155–164. https://doi.org/10.1016/j.ultsonch.2014.10.010
  42. Parchami M, Ferreira JA, Taherzadeh MJ. Starch and protein recovery from brewer’s spent grain using hydrothermal pretreatment and their conversion to edible filamentous fungi – A brewery biorefinery concept. Bioresource Technology. 2021;337. https://doi.org/10.1016/j.biortech.2021.125409
  43. Coelho E, Rocha MAM, Saraiva JA, Coimbra MA. Microwave superheated water and dilute alkali extraction of brewers' spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydrate Polymers. 2014;99:415–422. https://doi.org/10.1016/j.carbpol.2013.09.003
  44. Mendez DA, Marti E, Puyuelo B, Colon J, Ponsa S. Evaluation of pre-treatments of brewery’s spent grain for growing bacteria in the production of polyhydroxyalkanoates. Chemical Engineering Transactions. 2018;65:403–408. https://doi.org/10.3303/CET1865068
  45. Mishtra PK, Gregor T, Wimmer R. Utilising brewer’s spent grain as a source of cellulose nanofibres following separation of protein-based biomass. BioResources. 2017;12(1):107–116.
  46. Martínez-Encinas EG, Carvajal-Millán E, Calderón de la Barca AM, Rascón-Chu A, Martínez-Porchas M, Márquez-Escalante JA, et al. Extraction and characterization of arabinoxylans obtained from nixtamalized brewers’ spent grains. Food Science and Technology International. 2021;9. https://doi.org/10.1177/10820132211060609
  47. Reis SF, Coelho E, Coimbra MA, Abu-Ghannam N. Improved efficiency of brewer’s spent grain arabinoxylans by ultrasound-assisted extraction. Ultrasonics Sonochemistry. 2015;24:155–164. https://doi.org/10.1016/j.ultsonch.2014.10.010
  48. Vieira E, Rocha MAM, Coelho E, Pinho O, Saraiva JA, Ferreira IMPLVO, et al. Valuation of brewer's spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans. Industrial Crops and Products. 2014;52:136–143. https://doi.org/10.1016/j.indcrop.2013.10.012
  49. Coelho E, Rocha MAM, Moreira ASP, Domingues MRM, Coimbra MA. Revisiting the structural features of arabinoxylans from brewers’ spent grain. Carbohydrate Polymers. 2016;139:167–176. https://doi.org/10.1016/j.carbpol.2015.12.006
  50. Abdi R, Joye IJ. Prebiotic potential of cereal components. Foods. 2021;10(10). https://doi.org/10.3390/foods10102338
  51. Pires EJ, Ruiz HA, Teixeira JA, Vicente AA. A new approach on brewer’s spent grains treatment and potential use as lignocellulosic yeast cells carriers. Journal of Agricultural and Food Chemistry. 2012;60(23):5994–5999. https://doi.org/10.1021/jf300299m
  52. Kumari B, Tiwari BK, Walsh D, Griffin TP, Islam N, Lyng JG, et al. Impact of pulsed electric field pre-treatment on nutritional and polyphenolic contents and bioactivities of light and dark brewer's spent grains. Innovative Food Science and Emerging Technologies. 2019;54:200–210. https://doi.org/10.1016/j.ifset.2019.04.012
  53. Wu J, Magrakvelidze M, Schmidt LPH, Kunitski M, Pfeifer T, Schöffler M, et al. Understanding the role of phase in chemical bond breaking with coincidence angular streaking. Nature Communications. 2013;4. https://doi.org/10.1038/ncomms3177
  54. Torres-Mayanga PC, Azambuja SPH, Tyufekchiev M, Tompsett GA, Timko MT, Goldbeck R, et al. Subcritical water hydrolysis of brewer’s spent grains: Selective production of hemicellulosic sugars (C-5 sugars). Journal of Supercritical Fluids. 2019;145:19–30. https://doi.org/10.1016/j.supflu.2018.11.019
  55. Gernet MV, Zakharov MA, Gribkova IN. The antioxidant compounds determination of various brewer's spent grain extracts. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry. 2020;21(2):263–270.
  56. Meneses NGT, Martins S, Teixeira JA, Mussatto SI. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Separation and Purification Technology. 2013;108:152–158. https://doi.org/10.1016/j.seppur.2013.02.015
  57. Апаева А. В., Ямансарова Э. Т., Куковинец О. С. Исследование экстракции флавоноидов из плодовых оболочек гречихи в различных условиях // Вестник Башкирского университета. 2015. Т. 20. № 4. С. 1223–1226.
  58. Kochetova MV, Semenistaya EN, Larionov OG, Revina AA. The biologically active phenols and polyphenols determination in various objects by chromatography methods. Russian Chemical Reviews. 2007;76(1):79–90. https://doi.org/10.1070/RC2007v076n01ABEH003632
  59. Тухтаев Х. Р., Зарипова Р. Ш., Ёдгоров М. Ф. Количественная оценка качества сухого экстракта шалфея, полученного в присутствии поверхностно-активных веществ // Farmatsevtika jurnali. 2017. № 2. С. 112–116.
  60. Переверткина И. В., Волков А. Д., Болотов В. М. Влияние глицерина на экстрагирование антоциановых пигментов из растительного сырья // Химия растительного сырья. 2011. № 2. С. 187–188.
  61. Wahlström R, Rommi K, Willberg-Keyriläinen P, Ercili-Cura D, Holopainen-Mantila U, Hiltunen J, et al. High yield protein extraction from brewer's spent grain with novel carboxylate salt – urea aqueous deep eutectic solvents. ChemistrySelect. 2017;2(29):9355–9363. https://doi.org/10.1002/slct.201701492
  62. Ikram S, Huang LY, Zhang H, Wang J, Yin M. Composition and nutrient value proposition of brewers spent grain. Journal of Food Science. 2017;82(10):2232–2242. https://doi.org/10.1111/1750-3841.13794
  63. Li W, Yang H, Coldea TE, Zhao H. Modification of structural and functional characteristics of brewer's spent grain protein by ultrasound assisted extraction. LWT. 2021;139. https://doi.org/10.1016/j.lwt.2020.110582
  64. Chin YL, Chai KF, Chen WN. Upcycling of brewers' spent grains via solid-state fermentation for the production of protein hydrolysates with antioxidant and techno-functional properties. Food Chemistry: X. 2021;13. https://doi.org/10.1016/j.fochx.2021.100184
  65. Celus I, Brijs K, Delcour JA. Enzymatic hydrolysis of Brewers’ spent grain proteins and technofunctional properties of the resulting hydrolysates. Journal of Agricultural and Food Chemistry. 2007;55(21):8703–8710. https://doi.org/10.1021/jf071793c
  66. Connolly A, Piggott CO, Fitzgerald RJ. Characterization of protein-rich isolates and antioxidant phenolic extracts from pale and black spent grain brewers. International Journal of Food Science and Technology. 2013;48(8):1670–1681.
  67. Kramer RM, Shende VR, Motl N, Pace CN, Scholtz JM. Toward a molecular understanding of protein solubility: increased negative surface charge correlates with increased solubility. Biophysical Journal. 2012;102(8):1907–1915. https://doi.org/10.1016/j.bpj.2012.01.060
  68. Qin F, Johansen AZ, Mussatto SI. Evaluation of different pretreatment strategies for protein extraction from brewer’s spent grains. Industrial Crops and Products. 2018;125:443–453. https://doi.org/10.1016/j.indcrop.2018.09.017
  69. Treimo J, Aspmo SI, Eijsink VGH, Horn SJ. Enzymatic solubilization of proteins in Brewer’s spent grain. Journal of Agricultural and Food Chemistry. 2008;56(12):5359–5365. https://doi.org/10.1021/jf073317s
  70. Essien JP, Udotong IR. Amino acid profile of biodegraded brewers spent grains (BSG). Journal of Applied Sciences and Environmental Management. 2008;12(1):109–111. https://doi.org/10.4314/jasem.v12i1.55582
  71. Barbosa C, García-Martínez J, Pérez-Ortín JE, Mendes-Ferreira A. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability. PLoS ONE. 2015;10(4). https://doi.org/10.1371/journal.pone.0122709
  72. Cermeño M, Connolly A, O'Keeffe MB, Flynn C, Alashi AM, Aluko RE, et al. Identification of bioactive peptides from brewers' spent grain and contribution of Leu/Ile to bioactive potency. Journal of Functional Foods. 2019;60. https://doi.org/10.1016/j.jff.2019.103455
  73. Nongonierma AB, FitzGerald RJ. Features of dipeptidyl peptidase IV (DPP‐IV) inhibitory peptides from dietary proteins. Journal of Food Biochemistry. 2019;43(1). https://doi.org/10.1111/jfbc.12451
  74. Ma F-F, Wang H, Wei C-K, Thakur K, Wei Z-J, Jiang L. Three novel ACE inhibitory peptides isolated from Ginkgo biloba seeds: Purification, inhibitory kinetic and mechanism. Frontiers in Pharmacology. 2019;9. https://doi.org/10.3389/fphar.2018.01579
  75. Tang D-S, Yin G-M, He Y-Z, Hu S-Q, Li B, Li L, et al. Recovery of protein from brewer's spent grain by ultrafiltration. Biochemical Engineering Journal. 2009;48(1):1–5. https://doi.org/10.1016/j.bej.2009.05.019
  76. Jaeger A, Zannini E, Sahin AW, Arendt EK. Barley protein properties, extraction and applications, with a focus on brewers’ spent grain protein. Foods. 2021;10(6). https://doi.org/10.3390/foods10061389
  77. Tang D-S, Tian Y-J, He Y-Z, Li L, Hu S-Q, Li B. Optimisation of ultrasonic-assisted protein extraction from brewer’s spent grain. Czech Journal of Food Sciences. 2010;28(1):9–17. https://doi.org/10.17221/178/2009-cjfs
  78. Macias-Garbett R, Serna-Hernández SO, Sosa-Hernández JE, Parra-Saldívar R. Phenolic compounds from brewer’s spent grains: toward green recovery methods and applications in the cosmetic industry. Frontiers in Sustainable Food Systems. 2021;5. https://doi.org/10.3389/fsufs.2021.681684
  79. Zuorro A, Iannone A, Lavecchia R. Water-organic solvent extraction of phenolic antioxidants from brewers’ spent grain. Processes. 2019;7(3). https://doi.org/10.3390/pr7030126
  80. Andres AI, Petron MJ, Lopez AM, Timon ML. Optimization of extraction conditions to improve phenolic content and in vitro antioxidant activity in craft brewers’ spent grain using Response Surface Methodology (RSM). Foods. 2020;9(10). https://doi.org/10.3390/foods9101398
  81. Birsan RI, Wilde P, Waldron KW, Rai DK. Recovery of polyphenols from brewer's spent grains. Antioxidants. 2019;8(9). https://doi.org/10.3390/antiox8090380
  82. Bonifácio-Lopes T, Vilas Boas AA, Coscueta ER, Costa EM, Silva S, Campos D, et al. Bioactive extracts from brewer's spent grain. Food and Function. 2020;11(10):8963–8977. https://doi.org/10.1039/D0FO01426E
  83. Lemańska K, Szymusiak H, Tyrakowska B, Zieliński R, Soffers AEMF, Rietjens IMCM. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radical Biology and Medicine. 2001;31(7):869–881. https://doi.org/10.1016/S0891-5849(01)00638-4
  84. Honda S, Ishida R, Hidaka K, Masuda T. Stability of polyphenols under alkaline conditions and the formation of a xanthine oxidase inhibitor from gallic acid in a solution at pH 7.4. Food Science and Technology Research. 2019;25(1):123–129. https://doi.org/10.3136/fstr.25.123
  85. Friedman M, Jürgens HS. Effect of pH on the stability of plant phenolic compounds. Journal of Agricultural and Food Chemistry. 2000;48(6):2101–2110. https://doi.org/10.1021/jf990489
  86. Zeng L, Ma M, Li C, Luo L. Stability of tea polyphenols solution with different pH at different temperatures. International Journal of Food Properties. 2017;20(1):1–18. https://doi.org/10.1080/10942912.2014.983605
  87. Zhou X, Iqbal A, Li J, Liu C, Murtaza A, Xu X, et al. Changes in browning degree and reducibility of polyphenols during autoxidation and enzymatic oxidation. Antioxidants. 2021;10(11). https://doi.org/10.3390/antiox10111809
  88. Hernanz D, Nuñez V, Sancho AI, Faulds CB, Williamson G, Bartolomé B, et al. Hydroxycinnamic acids and ferulic acid dehydrodimers in barley and processed barley. Journal of Agricultural and Food Chemistry. 2001;49(10):4884–4888. https://doi.org/10.1021/jf010530u
  89. Bartolomé B, Santos M, Jimeénez JJ, Del Nozal MJ, Gomez-Cordoveés C. Pentoses and hydroxycinnamic acids in brewer’s spent grain. Journal of Cereal Science. 2002;36(1):51–58. https://doi.org/10.1006/jcrs.2002.0442
  90. Mandalari G, Faulds C, Sancho AI, Saija A, Bisignano G, Locurto R, et al. Fractionation and characterisation of arabinoxylans from brewers’ spent grain and wheat bran. Journal of Cereal Science. 2005;42(2):205–212. https://doi.org/10.1016/j.jcs.2005.03.001
  91. Mussatto SI, Dragone G, Roberto IC. Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer’s spent grain. Industrial Crops and Products. 2007;25(2):231–237. https://doi.org/10.1016/j.indcrop.2006.11.001
  92. Jay AJ, Parker ML, Faulks R, Husband F, Wilde P, Smith AC, et al. A systematic micro-dissection of brewers’ spent grain. Journal of Cereal Science. 2008;47(2):357–364. https://doi.org/10.1016/j.jcs.2007.05.006
  93. McCarthy AL, O'Callaghan YC, Connolly A, Piggott CO, Fitzgerald RJ, O'Brien NM. Phenolic extracts of brewers’ spent grain (BSG) as functional ingredients – Assessment of their DNA protective effect against oxidant-induced DNA single strand breaks in U937 cells. Food Chemistry. 2012;134(2):641–646. https://doi.org/10.1016/j.foodchem.2012.02.133
  94. Reis SF, Abu-Ghannam N. Antioxidant capacity, arabinoxylans content and in vitro glycaemic index of cereal-based snacks incorporated with brewer’s spent grain. LWT – Food Science and Technology. 2014;55(1):269–277. https://doi.org/10.1016/j.lwt.2013.09.004
  95. Stefanello FS, dos Santos CO, Bochi VC, Fruet APB, Soquetta MB, Dörr AC, et al. Analysis of polyphenols in brewer’s spent grain and its comparison with corn silage and cereal brans commonly used for animal nutrition. Food Chemistry. 2018;239:385–401. https://doi.org/10.1016/j.foodchem.2017.06.130
  96. Ideia P, Sousa-Ferreira I, Castilho PC. A novel and simpler alkaline hydrolysis methodology for extraction of ferulic acid from brewer’s spent grain and its (partial) purification through adsorption in a synthetic resin. Foods. 2020;9(5). https://doi.org/10.3390/foods9050600
  97. Tišma M, Jurić A, Bucić-Kojić A, Panjičko M, Planinić M. Biovalorization of brewers’ spent grain for the production of laccase and polyphenols. Journal of the Institute of Brewing. 2018;124(2):182–186. https://doi.org/10.1002/jib.479
  98. Leite P, Silva C, Salgado JM, Belo I. Simultaneous production of lignocellulolytic enzymes and extraction of antioxidant compounds by solid-state fermentation of agro-industrial wastes. Industrial Crops and Products. 2019;137:315–322. https://doi.org/10.1016/j.indcrop.2019.04.044
  99. Tan YX, Mok WK, Lee J, Kim J, Chen WN. Solid state fermentation of Brewers’ spent grains for improved nutritional profile using Bacillus subtilis WX-17. Fermentation. 2019;5(3). https://doi.org/10.3390/fermentation5030052
  100. da Costa Maia I, Thomaz dos Santos D'Almeida C, Guimarães Freire DM, d'Avila Costa Cavalcanti E, Cameron LC, Furtado Dias F, et al. Effect of solid-state fermentation over the release of phenolic compounds from brewer's spent grain revealed by UPLC-MSE. LWT. 2020;133. https://doi.org/10.1016/j.lwt.2020.110136
  101. Forssell P, Kontkanen H, Schols HA, Hinz S, Eijsink VGH, Treimo J, et al. Hydrolysis of brewers’ spent grain by carobohydrate degrading enzymes. Journal of the Institute of Brewing. 2008;114(4):306–314. https://doi.org/10.1002/j.2050-0416.2008.tb00774.x
  102. Szwajgier D, Targoński Z. Release of free ferulic acid and feruloylated arabinoxylans from brewery’s spent grain by commercial enzyme preparations. EJPAU. 2006;9(1).
  103. Alonso-Riaño P, Diez MTS, Blanco B, Beltrán S, Trigueros E, Benito-Román O. Water ultrasound-assisted extraction of polyphenol compounds from brewer's spent grain: Kinetic study, extract characterization, and concentration. Antioxidants. 2020;9(3). https://doi.org/10.3390/antiox9030265
  104. Chetrariu A, Dabija A. Spent grain from malt whisky: Assessment of the phenolic compounds. Molecules. 2021;26(11). https://doi.org/10.3390/molecules26113236
  105. Herbst G, Hamerski F, Errico M, Corazza ML. Pressurized liquid extraction of brewer’s spent grain: Kinetics and crude extracts characterization. Journal of Industrial and Engineering Chemistry. 2021;102:370–383. https://doi.org/10.1016/j.jiec.2021.07.020
  106. Smeds AI, Eklund PC, Sjöholm RE, Willför SM, Nishibe S, Deyama T, et al. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. Journal of Agricultural and Food Chemistry. 2007;55(4):1337–1346. https://doi.org/10.1021/jf0629134
  107. Holtekjølen AK, Kinitz C, Knutsen SH. Flavanol and bound phenolic acid contents in different barley varieties. Journal of Agricultural and Food Chemistry. 2006;54(6):2253–2260. https://doi.org/10.1021/jf052394p
  108. He R, Wu K, Zhang A, Xie Z, Sun P. Mechanochemical-assisted extraction and pharmacological study of triterpenoids from Antrodia camphorata. Applied Sciences. 2019;9(20). https://doi.org/10.3390/app9204281
  109. de Oliveira AA, Torres AG, Perrone D, Monteiro M. Effect of high hydrostatic pressure processing on the anthocyanins content, antioxidant activity, sensorial acceptance and stability of jussara (Euterpe edulis) juice. Foods. 2021;10(10). https://doi.org/10.3390/foods10102246
  110. Uribe E, Delgadillo A, Giovagnoli-Vicunã C, Quispe-Fuentes I, Zura-Bravo L. Extraction techniques for bioactive compounds and antioxidant capacity determination of chilean papaya (Vasconcellea pubescens) fruit. Journal of Chemistry. 2015;2015. https://doi.org/10.1155/2015/347532
  111. Spinelli S, Conte A, Lecce L, Padalino L, Del Nobile MA. Supercritical carbon dioxide extraction of brewer's spent grain. Journal of Supercritical Fluids. 2015;107:69–74. https://doi.org/10.1016/j.supflu.2015.08.017
  112. Ferrentino G, Ndayishimiye J, Haman N, Scampicchio M. Functional activity of oils from brewer’s spent grain extracted by supercritical carbon dioxide. Food and Bioprocess Technology. 2019;12(5):789–798. https://doi.org/10.1007/s11947-019-02249-3
  113. López-Linares JC, Campillo V, Coca M, Lucas S, García-Cubero MT, et al. Microwave-assisted deep eutectic solvent extraction of phenolic compounds from brewer's spent grain. Journal of Chemical Technology and Biotechnology. 2021;96(2):481–490. https://doi.org/10.1002/jctb.6565
  114. Moreira MM, Morais S, Barros AA, Delerue-Matos C, Guido LF. A novel application of microwave-assisted extraction of polyphenols from brewer's spent grain with HPLC-DAD-MS analysis. Analytical and Bioanalytical Chemistry. 2012;403(4):1019–1029. https://doi.org/10.1007/s00216-011-5703-y
  115. Martín-García B, Tylewicz U, Verardo V, Pasini F, Gómez-Caravaca AM, Caboni MF, et al. Pulsed electric field (PEF) as pre-treatment to improve the phenolic compounds recovery from brewers' spent grains. Innovative Food Science and Emerging Technologies. 2020;64. https://doi.org/10.1016/j.ifset.2020.102402
  116. Redondo D, Venturini ME, Luengo E, Raso J, Arias E. Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innovative Food Science and Emerging Technologies. 2018;45:335–343. https://doi.org/10.1016/j.ifset.2017.12.004
  117. Tzima K, Brunton NP, Lyng JG, Frontuto D, Rai DK. The effect of Pulsed Electric Field as a pre-treatment step in Ultrasound Assisted Extraction of phenolic compounds from fresh rosemary and thyme by-products. Innovative Food Science and Emerging Technologies. 2021;69. https://doi.org/10.1016/j.ifset.2021.102644
  118. Eder R, Mappala H. The role of tocotrienols in the treatment of non-alcoholic steatohepatitis- a meta-analysis. Gut. 2019;68:A144. https://doi.org/10.1136/gutjnl-2019-IDDFabstracts.280
  119. Thavasiappan V, Nanjappan K, Ezakial Napolean R, Visha P, Selvaraj P, Doraisamy KA. Fatty acid profile of wet brewer’s spent grain. International Journal of Science, Environment and Technology. 2016;5(4):2516–2521.
  120. Zárate R, el Jaber-Vazdekis N, Tejera N, Pérez JA, Rodríguez C. Significance of long chain polyunsaturated fatty acids in human health. Clinical and Translational Medicine. 2017;6(1). https://doi.org/10.1186/s40169-017-0153-6
  121. del Río JC, Prinsen P, Gutiérrez A. Chemical composition of lipids in brewer’s spent grain: A promising source of valuable phytochemicals. Journal of Cereal Science. 2013;58(2):248–254. https://doi.org/10.1016/j.jcs.2013.07.001
  122. Bohnsack C, Ternes W, Büsing A, Drotleff AM. Tocotrienol levels in sieving fraction extracts of brewer’s spent grain. European Food Research and Technology. 2011;232(4):563–573. https://doi.org/10.1007/s00217-010-1419-z
  123. Phelan A, Meissner K, Humphrey J, Ross H. Plastic pollution and packaging: Corporate commitments and actions from the food and beverage sector. Journal of Cleaner Production. 2022;331. https://doi.org/10.1016/j.jclepro.2021.129827
  124. Moreirinha C, Vilela C, Silva NHCS, Pinto RJB, Almeida A, Rocha MAM, et al. Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and feruloylated compounds for active packaging. Food Hydrocolloids. 2020;108. https://doi.org/10.1016/j.foodhyd.2020.105836
  125. Ferreira AM, Martins J, Carvalho LH, Magalhães FD. Biosourced disposable trays made of brewer’s spent grain and potato starch. Polymers. 2019;11(5). https://doi.org/10.3390/polym11050923
Как цитировать?
Анализ возможностей извлечения органических соединений пивной дробины различными способами / И. Н. Грибкова [и др.] // Техника и технология пищевых производств. 2022. Т. 52. № 3. С. 469–489. https://doi. org/10.21603/2074-9414-2022-3-2383
О журнале