ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Характеристика сезонных изменений белкового состава молока хайнака

Аннотация
Вопрос изучения качественного состава молока, потребляемого населением, является актуальным. Цель исследования – изучение белкового состава молока хайнака (гибрид яка и коровы), разводимого в условиях высокогорья Северного Кыргызстана, в зависимости от сезона года.
Объектом исследования являлось молоко хайнака из фермерских хозяйств, расположенных в Иссык-Кульской области на высоте 2840 м над уровнем моря. Применялись стандартные методы исследования, в том числе ВЭЖХ-анализ и капиллярный электрофорез.
Массовая доля белка в молоке хайнака варьируется в пределах 3,91–4,39 %. Массовая доля белка в молоке хайнака весеннего, летнего и осеннего сезонов выше коровьего на 0,54, 1,02 и 0,84 % соответственно. Содержание общего азота в образцах молока трех сезонов коррелирует с массовой долей белка в них, т. е. к лету наблюдалось максимальное значение этого показателя – 0,689 ± 0,004 %. Содержание небелкового азота оставалось практически на одном уровне – 0,0489–0,0496 %. В весеннем молоке наблюдалось максимальное содержание сывороточных белков – на 0,2 % больше, чем в летнем (0,94 ± 0,05 %) и осеннем (0,97 ± 0,05 %). По содержанию казеиновых белков повышение отмечено в летнем молоке (на 1 % от холодного периода). Среднее содержание β-лактоглобулина в молоке хайнака составило 2,35 мг/см3, α-лактальбумина – 2,12 мг/см3. По аминокислотному составу молоко хайнака сбалансировано, за исключением триптофана. В теплый сезон содержание большинства незаменимых аминокислот было выше, чем в холодный (P < 0,05), что соответствовало изменениям содержания общего белка.
Молоко хайнака отличается более высоким содержанием белка и отдельных составляющих в сравнении с коровьим. Это позволяет рекомендовать этот вид нетрадиционного молочного сырья для выработки белковых продуктов (сыра, творога и др.), в том числе функциональных.
Ключевые слова
Молоко, хайнак, сезон, массовая доля белка, небелковый азот, сывороточные белки, аминокислотный состав
СПИСОК ЛИТЕРАТУРЫ
  1. Meldenberg DN, Polyakova OS, Semenova ES, Yurova EA. Development of a comprehensive milk protein composition assessment from raw materials of various farm animals for the functional products production. Storage and Processing of Farm Products. 2020;(3):118–133. (In Russ.). https://doi.org/10.36107/spfp.2020.352
  2. Ospanov AB, Kulzhanova BO, Shchetinina EM, Velyamov ShM, Makeeva RK, Bektursunova MD. The research of the physical-chemical composition and technological properties of sheep and goat milk during the summer lactation period. Storage and Processing of Farm Products. 2021;(2):64–74. (In Russ.). https://doi.org/10.36107/spfp.2021.237
  3. Guo X, Long R, Kreuzer M, Ding L, Shang Z, Zhang Y, et al. Importance of functional ingredients in yak milk-derived food on health of Tibetan nomads living under high-altitude stress: A review. Critical Reviews in Food Science and Nutrition. 2014;54(3):292–302. https://doi.org/10.1080/10408398.2011.584134
  4. Мусульманова М. М., Элеманова Р. Ш., Дюшеева Н. С. Молоко хайнака как сырье для создания функциональных продуктов // Известия Кыргызского государственного технического университета им. И. Раззакова. 2019. Т. 50. № 2–2. С. 164–171.
  5. Яководство Кыргызстана / А. А. Абдыкеримов [и др.] // Вестник Кыргызского национального аграрного университета им. К. И. Скрябина. 2016. Т. 37. № 1. С. 66–70.
  6. Действие лазера на молочную продуктивность ячих / К. М. Беккулиев [и др.] // Вестник Кыргызского национального аграрного университета им. К. И. Скрябина. 2015. Т. 34. № 2. С. 74–80.
  7. Shi F, Wang H, Degen AA, Zhou J, Guo N, Mudassar S, et al. Rumen parameters of yaks (Bos grunniens) and indigenous cattle (Bos taurus) grazing on the Qinghai-Tibetan Plateau. Journal of Animal Physiology and Animal Nutrition. 2019;103(4):969–976. https://doi.org/10.1111/jpn.13095
  8. Guo X, Bao P, Wu X, Yang Z, Shi S, Xiong L, et al. The complete mitochondrial genome of the hybrid of Jersey cattle (Bos taurus;♂)× Gannan yak (Bos grunniens;♀). Mitochondrial DNA Part B. 2019;4(2):4130–4131. https://doi.org/10.1080/23802359.2019.1692721
  9. Long L, Zhu Y, Li Z, Zhang H, Liu L, Bai J. Differential expression of skeletal muscle mitochondrial proteins in yak, dzo, and cattle: a proteomics-based study. Journal of Veterinary Medical Science. 2020;82(8):1178–1186. https://doi.org/10.1292/jvms.19-0218
  10. Hirata M. Milk culture of the Tibetan Plateau. In: Hirata M, editor. Milk culture in Eurasia. Singapore: Springer; 2020. pp. 197–242. https://doi.org/10.1007/978-981-15-1765-5_6
  11. Kour G, Singh A, Kumar P, Kumar D. An overview of diversified animal genetic resources in the Indian state of Jammu and Kashmir. International Journal of Current Microbiology and Applied Sciences. 2018;7(10):3113–3121. https://doi.org/10.20546/ijcmas.2018.710.361
  12. Zhong J, Ma Z, Chai Z, Wang H, Zhang C, Ji Q, et al. Whole genome sequencing of the Dzo: Genetic implications for high altitude adaptation, sterility, and milk and meat production. Kafkas Universitesi Veteriner Fakultesi Dergisi. 2018;24(6):835–844. https://doi.org/10.9775/kvfd.2018.20022
  13. Gu X, Sun W, Yi K, Yang L, Chi F, Luo Z, et al. Comparison of muscle lipidomes between cattle-yak, yak, and cattle using UPLC–MS/MS. Journal of Food Composition and Analysis. 2021;103. https://doi.org/10.1016/j.jfca.2021.104113
  14. Barsila SR, Kreuzer M, Devkota NR, Ding L, Marquardt S. Adaptation to Himalayan high altitude pasture sites by yaks and different types of hybrids of yaks with cattle. Livestock Science. 2014;169:125–136. https://doi.org/10.1016/j.livsci.2014.09.004
  15. Barsila SR, Devkota NR, Kreuzer M, Marquardt S. Effects of different stocking densities on performance and activity of cattle × yak hybrids along a transhumance route in the Eastern Himalaya. SpringerPlus. 2015;4(1). https://doi.org/10.1186/s40064-015-1175-4
  16. Sha Y, Hu J, Shi B, Dingkao R, Wang J, Li S, et al. Characteristics and functions of the rumen microbial community of Cattle-Yak at different ages. BioMed Research International. 2020;2020. https://doi.org/10.1155/2020/3482692
  17. Li H, Ma Y, Dong A, Wang J, Li Q, He S, et al. Protein composition of yak milk. Dairy Science and Technology. 2010;90(1):111–117. https://doi.org/10.1051/dst/2009048
  18. Li H, Ma Y, Li Q, Wang J, Cheng J, Xue J, et al. The chemical composition and nitrogen distribution of Chinese yak (Maiwa) milk. International Journal of Molecular Sciences. 2011;12(8):4885–4895. https://doi.org/10.3390/ijms12084885
  19. Chen Y, Qu S, Huang Z, Ren Y, Wang L, Rankin SA. Analysis and comparison of key proteins in Maiwa yak and bovine milk using high-performance liquid chromatography mass spectrometry. Journal of Dairy Science. 2021;104(8):8661–8672. https://doi.org/10.3168/jds.2021-20269
  20. Yang L, Yang C, Chi F, Gu X, Zhu Y. A survey of the vitamin and mineral content in milk from yaks raised at different altitudes. International Journal of Food Science. 2021;2021. https://doi.org/10.1155/2021/1855149
  21. Sowmya K, Bhat MI, Bajaj RK, Kapila S, Kapila R. Buffalo milk casein derived decapeptide (YQEPVLGPVR) having bifunctional anti-inflammatory and antioxidative features under cellular milieu. International Journal of Peptide Research and Therapeutics. 2019;25(2):623–633. https://doi.org/10.1007/s10989-018-9708-7
  22. Numpaque M, Şanlı T, Anli EA. Diversity of milks other than cow, sheep, goat and buffalo: In terms of nutrition and technological use. Turkish Journal of Agriculture – Food Science and Technology. 2019;7(12):2047–2053. https://doi.org/10.24925/turjaf.v7i12.2047-2053.2623
  23. Сублимационная сушка молока хайнака кыргызского / Р. Ш. Элеманова [и др.] // Современное состояние, перспективы развития АПК и производства специализированных продуктов питания: Материалы Международной научно-практической конференции. Омск, 2020. С. 225–229.
  24. Khadka MS, Thapa G. Economic and financial returns of livestock agribusiness in high mountains of Nepal. Journal of Agriculture and Rural Development in the Tropics and Subtropics. 2020;121(2):251–263. https://doi.org/10.17170/kobra-202010191973
  25. Бахтушкина А. И., Коваль А. Д. Молочность и химический состав молока ячих алтайской популяции // Вестник Алтайского государственного аграрного университета. 2020. Т. 190. № 8. С. 81–86.
  26. Osintsev AM, Braginsky VI, Rynk VV, Chebotarev AL. Specifics of milk and plant-based milk-like products coagulation. Food Processing: Techniques and Technology. 2018;48(3):81–89. (In Russ.). https://doi.org/10.21603/2074-9414-2018-3-81-89
  27. Zhang J, Yang M, Cai D, Hao Y, Zhao X, Zhu Y, et al. Composition, coagulation characteristics, and cheese making capacity of yak milk. Journal of Dairy Science. 2020;103(2):1276–1288. https://doi.org/10.3168/jds.2019-17231
  28. Gai N, Uniacke‐lowe T, O’regan J, Faulkner H, Kelly AL. Effect of protein genotypes on physicochemical properties and protein functionality of bovine milk: A review. Foods. 2021;10(10). https://doi.org/10.3390/foods10102409
  29. Indra R, Magash A. Composition, quality and consumption of yak milk in Mongolia. Yak production in Central Asian highlands: Proceedings of the third international congress on yak held in Lhasa; P.R. China; 2000; Lhasa. Nairobi: International Livestock Research Institute; 2002. p. 493–498.
  30. Barsila SR. Effect of parity in different grazing seasons on milk yield and composition of cattle × yak hybrids in the Himalayan alpines. Journal of Applied Animal Research. 2019;47(1):591–596. https://doi.org/10.1080/09712119.2019.1697274
  31. Yuan M, Xia W, Zhang X, Liu Y, Jiang M. Identification and verification of differentially expressed genes in yak mammary tissue during the lactation cycle. Journal of Dairy Research. 2020;87(2):158–165. https://doi.org/10.1017/S0022029919001006
  32. Van Hese I, Goossens K, Vandaele L, Opsomer G. Invited review: MicroRNAs in bovine colostrum – Focus on their origin and potential health benefits for the calf. Journal of Dairy Science. 2020;103(1):1–15. https://doi.org/10.3168/jds.2019-16959
  33. Nayak CM, Ramachandra CT, Nidoni U, Hiregoudar S, Ram J, Naik N. Physico-chemical composition, minerals, vitamins, amino acids, fatty acid profile and sensory evaluation of donkey milk from Indian small grey breed. Journal of Food Science and Technology. 2020;57(8):2967–2974. https://doi.org/10.1007/s13197-020-04329-1
  34. So S, Wanapat M, Cherdthong A. Effect of sugarcane bagasse as industrial by-products treated with Lactobacillus casei TH14, cellulase and molasses on feed utilization, ruminal ecology and milk production of mid-lactating Holstein Friesian cows. Journal of the Science of Food and Agriculture. 2021;101(11):4481–4489. https://doi.org/10.1002/jsfa.11087
  35. Khachlouf K, Hamed H, Gdoura R, Gargouri A. Effects of zeolite supplementation on dairy cow production and ruminal parameters – a review. Annals of Animal Science. 2018;18(4):857–877.
  36. Остроумов Л. А., Шахматов Р. А., Курбанова М. Г. Исследование сезонных изменений фракционного состава белков молока // Техника и технология пищевых производств. 2011. Т. 1. № 20. С. 36a–41.
  37. Kurchenko VP, Simonenko ES, Sushynskaya NV, Halavach TN, Petrov AN, Simonenko SV. HPLC identification of mare’s milk and its mix with cow’s milk. Food Processing: Techniques and Technology. 2021;51(2):402–412. (In Russ.). https://doi.org/10.21603/2074-9414-2021-2-402-412
  38. Fan XY, Qiu LH, Zhang YY, Teng XH, Miao YW. Polymorphism, molecular characteristics of alpha-lactalbumin (LALBA) gene in river and swamp buffalo. Russian Journal of Genetics. 2021;57(7):836–846. https://doi.org/10.1134/S1022795421070085
  39. Wang L, Ma Y, Li H, Yang F, Cheng J. Identification and characterization of yak α-lactalbumin and β-lactoglobulin. Journal of Dairy Science. 2021;104(3):2520–2528. https://doi.org/10.3168/jds.2020-18546
  40. Moloney C, O'Connor D, O'Regan J. Polar lipid, ganglioside and cholesterol contents of infant formulae and growing up milks produced with an alpha lactalbumin-enriched whey protein concentrate. International Dairy Journal. 2020;107. https://doi.org/10.1016/j.idairyj.2020.104716
  41. Joehnke MS, Lametsch R, Sørensen JC. Improved in vitro digestibility of rapeseed napin proteins in mixtures with bovine beta-lactoglobulin. Food Research International. 2019;123:346–354. https://doi.org/10.1016/j.foodres.2019.05.004
  42. Fei S, Zou L, Xie X, Yang F, Chen H, Li X. Purification and characterization of bovine β-lactoglobulin variants A and B (characterization of bovine β-lactoglobulin variants). Food Science and Technology Research. 2020;26(3):399–409. https://doi.org/10.3136/FSTR.26.399
  43. Ozdemir M, Kopuzlu S, Topal M, Bilgin OC. Relationships between milk protein polymorphisms and production traits in cattle: A systematic review and meta-analysis. Archives Animal Breeding. 2018;61(2):197–206. https://doi.org/10.5194/aab-61-197-2018
  44. Roin NR, Larsen LB, Comi I, Devold TG, Eliassen TI, Inglingstad RA, et al. Identification of rare genetic variants of the αS-caseins in milk from native Norwegian dairy breeds and comparison of protein composition with milk from high-yielding Norwegian Red cows. Journal of Dairy Science. 2022;105(2):1014–1027. https://doi.org/10.3168/jds.2021-20455
  45. Bär C, Sutter M, Kopp C, Neuhaus P, Portmann R, Egger L, et al. Impact of herbage proportion, animal breed, lactation stage and season on the fatty acid and protein composition of milk. International Dairy Journal. 2020;109. https://doi.org/10.1016/j.idairyj.2020.104785
  46. Li S, Ye A, Singh H. Seasonal variations in composition, properties, and heat-induced changes in bovine milk in a seasonal calving system. Journal of Dairy Science. 2019;102(9):7747–7759. https://doi.org/10.3168/jds.2019-16685
  47. Vanbergue E, Delaby L, Peyraud JL, Colette S, Gallard Y, Hurtaud C. Effects of breed, feeding system, and lactation stage on milk fat characteristics and spontaneous lipolysis in dairy cows. Journal of Dairy Science. 2017;100(6):4623–4636. https://doi.org/10.3168/jds.2016-12094
  48. Bernabucci U, Basiricò L, Morera P, Dipasquale D, Vitali A, Piccioli Cappelli F, et al. Effect of summer season on milk protein fractions in Holstein cows. Journal of Dairy Science. 2015;98(3):1815–1827. https://doi.org/10.3168/jds.2014-8788
  49. Holeček M. Histidine in health and disease: Metabolism, physiological importance, and use as a supplement. Nutrients. 2020;12(3). https://doi.org/10.3390/nu12030848
  50. Dong X, Zhou Z, Wang L, Saremi B, Helmbrecht A, Wang Z. Increasing the availability of threonine, isoleucine, valine, and leucine relative to lysine while maintaining an ideal ratio of lysine: methionine alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. Journal of Dairy Science. 2018;101(6):5502–5514. https://doi.org/10.3168/jds.2017-13707
  51. Xu LB, Hanigan MD, Lin XY, Li MM, Yan ZG, Hu ZY, et al. Effects of jugular infusions of isoleucine, leucine, methionine, threonine, and other amino acids on insulin and glucagon concentrations, mammalian target of rapamycin (mTOR) signaling, and lactational performance in goats. Journal of Dairy Science. 2019;102(10):9017–9027. https://doi.org/10.3168/jds.2018-16102
  52. Räisänen SE, Lage CFA, Fetter ME, Melgar A, Pelaez AM, Stefenoni HA, et al. Histidine dose-response effects on lactational performance and plasma amino acid concentrations in lactating dairy cows: 2. Metabolizable protein-deficient diet. Journal of Dairy Science. 2021;104(9):9917–9930. https://doi.org/10.3168/jds.2021-20189
  53. Yoder PS, Huang X, Teixeira IA, Cant JP, Hanigan MD. Effects of jugular infused methionine, lysine, and histidine as a group or leucine and isoleucine as a group on production and metabolism in lactating dairy cows. Journal of Dairy Science. 2020;103(3):2387–2404. https://doi.org/10.3168/jds.2019-17082
  54. Lapierre H, Lobley GE, Ouellet DR. Histidine optimal supply in dairy cows through determination of a threshold efficiency. Journal of Dairy Science. 2021;104(2):1759–1776. https://doi.org/10.3168/jds.2020-19205
  55. Räisänen SE, Lage CFA, Oh J, Melgar A, Nedelkov K, Chen X, et al. Histidine dose-response effects on lactational performance and plasma amino acid concentrations in lactating dairy cows: 1. Metabolizable protein-adequate diet. Journal of Dairy Science. 2021;104(9):9902–9916. https://doi.org/10.3168/jds.2021-20188
  56. Gao H, Hu H, Zheng N, Wang J. Leucine and histidine independently regulate milk protein synthesis in bovine mammary epithelial cells via mTOR signaling pathway. Journal of Zhejiang University. Science B. 2015;16(6):560–572. https://doi.org/10.1631/jzus.B1400337
  57. Xia W, Osorio Johan S, Yang Y, Liu DL, Jiang MF. Short communication: Characterization of gene expression profiles related to yak milk protein synthesis during the lactation cycle. Journal of Dairy Science. 2018;101(12):11150–11158. https://doi.org/10.3168/jds.2018-14715
Как цитировать?
Элеманова Р. Ш. Характеристика сезонных изменений белкового состава молока хайнака // Техника и технология пищевых производств. 2022. Т. 52. № 3. С. 555–569. https://doi.org/10.21603/2074-9414-2022-3-2381
О журнале