ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Микроклональное размножение и особенности адаптации к условиям ex vitro лесных ягодных растений рода Vaccinium

Аннотация
Для получения большого количества высококачественного оздоровленного посадочного материала хозяйственно ценных лесных ягодных растений необходимо использовать современные экономически эффективные методы размножения. Недостаточно изучены адаптация ex vitro видов Vaccinium и выращивание in vitro. Цель работы – изучение влияния росторегулирующих веществ на органогенез и адаптацию к нестерильным условиям брусники и красники при клональном микроразмножении.
Объектами исследования являлись растения-регенеранты брусники (Vaccinium vitis-idaea L.) сортов Koralle, Костромичка и Костромская розовая и красники (Vaccinium praestans Lamb.) Сахалинской и Курильской форм. Проведен химический анализ состава плодов. Изучалось влияние стерилизующих агентов и времени стерилизации на жизнеспособность эксплантов, состава питательной среды и концентрации росторегулирующих веществ на образование микропобегов и корней, состава субстрата на приживаемость растений к нестерильным условиям.
Наибольшая приживаемость эксплантов брусники (72 %) и красники (96 %) отмечена при использовании AgNO3 0,2 % при времени стерилизации 10 мин. Максимальные значения суммарной длины побегов in vitro отмечены при концентрации 2-iP 2,0 мг/л: для брусники – на среде AN (7,2 см), для красники – на среде WPM 1/2 (10,5 см). Наибольшие значения суммарной длины корней in vitro выявлены для брусники при использовании индолилуксусной кислоты в концентрации 2,0 мг/л (5,8 см), для красники – при использовании индолилмасляной кислоты в концентрации 1,0 мг/л (1,9 см). Максимальная приживаемость брусники ex vitro отмечена на субстрате из верхового торфа (89–92 %), красники – на смеси торфа с песком 1:1 (91–95 %).
Использование клонального микроразмножения с применением регуляторов роста (2-iP, индолилмасляная и индолилмасляная кислоты) и торфяных субстратов целесообразно при выращивании in vitro и адаптации ex vitro брусники и красники. Оно позволяет получить большое количество высококачественного посадочного материала с высокой приживаемостью растений.
Ключевые слова
Микроклональное размножение, in vitro, брусника, красника, биохимический состав, стерилизация, органогенез, ризогенез, адаптация, субстрат
СПИСОК ЛИТЕРАТУРЫ
  1. Makarov SS, Bagayev ES, Tsaregradskaya SYu, Kuznetsova IB. Problems of use and reproduction of phytogenic food and medicinal forest resources on the forest fund lands of the Kostroma region. Russian Forestry Journal. 2019;372(6):118–131. (In Russ.). https://doi.org/10.17238/issn0536-1036.2019.6.118
  2. Ильин В. С. Шиповник, клюква и другие редкие культуры сада. Челябинск: ЮУНИИСК, 2017. 318 с.
  3. Tyak GV, Kurlovich LE, Tyak AV. Biological recultivation of degraded peatlands by creating forest berry plants. Vestnik of the Kazan State Agrarian University. 2016;11(2):43–46. (In Russ.). https://doi.org/10.12737/20633
  4. Bujor O-C, Ginies C, Popa VI, Dufour C. Phenolic compounds and antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) leaf, stem and fruit at different harvest periods. Food Chemistry. 2018;252:356–365. https://doi.org/10.1016/j.foodchem.2018.01.052
  5. Nestby R, Hykkerud AL, Martinussen I. Review of botanical characterization, growth preferences, climatic adaptation and human health effects of Ericaceae and Empetraceae wild dwarf shrub berries in boreal, alpine and arctic areas. Journal of Berry Research. 2019;9(3):515–547. https://doi.org/10.3233/JBR-190390
  6. Chudetsky AI, Kuznetsova IB, Makarov SS, Surov VV. Obtaining planting material for Kamchatka bilberry (Vaccinium praestans Lamb.) by clonal micropropagation. Vestnik of Buryat State Academy of Agriculture named after V. Philippov. 2021;63(2):122–128. https://doi.org/10.34655/bgsha.2021.63.2.017
  7. Dincheva I, Badjakov I. Assesment of the anthocyanin variation in Bulgarian bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.). International Journal of Medicine and Pharmaceutical Science. 2016;6(3):39–50.
  8. Hossain MZ, Shea E, Daneshtalab M, Weber JT. Chemical analysis of extracts from newfoundland berries and potential neuroprotective effects. Antioxidants. 2016;5(4). https://doi.org/10.3390/antiox5040036
  9. Cioch M, Satora P, Skotniczny M, Semik-Szczurak D, Tarko T. Characterisation of antimicrobial properties of extracts of selected medicinal plants. Polish Journal of Microbiology. 2017;66(4):463–472.
  10. Dróżdż P, Šėžienė V, Pyrzynska K. Phytochemical properties and antioxidant activities of extracts from wild blueberries and lingonberries. Plant Foods for Human Nutrition. 2017;72(4):360–364. https://doi.org/10.1007/s11130-017-0640-3
  11. Isaak CK, Wang P, Prashar S, Karmin O, Brown DCW, Debnath SC, et al. Supplementing diet with Manitoba lingonberry juice reduces kidney ischemia-reperfusion injury. Journal of the Science of Food and Agriculture. 2017;97(9):3065–3076. https://doi.org/10.1002/jsfa.8200
  12. Tian Y, Liimatainen J, Alanne A-L, Lindstedt A, Liu P, Sinkkonen J, et al. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chemistry. 2017;220:266–281. https://doi.org/10.1016/j.foodchem.2016.09.145
  13. Чижик О. В., Решетников В. Н., Антипова Т. В. Генетическая трансформация Vaccinium vitis-idaea L. // Физиология растений и генетика. 2018. Т. 50. № 1. С. 23–28.
  14. Alam Z, Roncal J, Peña-Castillo L. Genetic variation associated with healthy traits and environmental conditions in Vaccinium vitis-idaea. BMC Genomics. 2018;19(1). https://doi.org/10.1186/s12864-017-4396-9
  15. Dróżdż P, Sežiene V, Wójcik J, Pyrzyńska K. Evaluation of bioactive compounds, minerals and antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) fruits. Molecules. 2018;23(1). https://doi.org/10.3390/molecules23010053
  16. Hoornstra D, Vesterlin J, Parnanen P, Al-Samadi A, Zlotogorski-Hurvitz A, Vered M, et al. Fermented lingonberry juice inhibits oral tongue squamous cell carcinoma invasion in vitro similarly to curcumin. In Vivo. 2018;32(5):1089–1095. https://doi.org/10.21873/invivo.11350
  17. Angelova SG, Ivanova SKr, Trifonovac I, Volevad S, Georgievae I, Stoyanova A, et al. Vaccinium vitis-idaea L., origin from Bulgaria indicate in vitro antitumor effect on human cervical and breast cancer cells. American Scientific Research Journal for Engineering, Technology, and Sciences. 2019;56(1):104–112.
  18. Jin Y, Liu Z, Liu D, Shi G, Liu D, Yang Y, et al. Natural antioxidant of rosemary extract used as an additive in the ultrasound-assisted extraction of anthocyanins from lingonberry (Vaccinium vitis-idaea L.) pomace. Industrial Crops and Products. 2019;138. https://doi.org/10.1016/j.indcrop.2019.05.074
  19. Кострыкина С. А. Использование красники (Vaccinium praestans Lamb.) в производстве мучных кондитерских изделий // Агропромышленный комплекс: проблемы и перспективы развития: Тезисы докладов всероссийской научно-практической конференции. Благовещенск, 2019. С. 68.
  20. Kowalska K, Olejnik A, Zielińska-Wasielica J, Olkowicz M. Inhibitory effects of lingonberry (Vaccinium vitis-idaea L.) fruit extract on obesity-induced inflammation in 3T3-L1 adipocytes and RAW 264.7 macrophages. Journal of Functional Foods. 2019;54:371–380. https://doi.org/10.1016/j.jff.2019.01.040
  21. Pärnänen P, Nikula-Ijäs P, Sorsa T. Antimicrobial and anti-inflammatory lingonberry mouthwash – A clinical pilot study in the oral cavity. Microorganisms. 2019;7(9). https://doi.org/10.3390/microorganisms7090331
  22. Zhang Z, Zhou Q, Huangfu G, Wu Y, Zhang J. Anthocyanin extracts of lingonberry (Vaccinium vitis-idaea L.) attenuate serum lipids and cholesterol metabolism in HCD-induced hypercholesterolaemic male mice. International Journal of Food Science and Technology. 2019;54(5):1576–1587. https://doi.org/10.1111/ijfs.14025
  23. Onali T, Kivimäki A, Mauramo M, Salo T, Korpela R. Anticancer effects of lingonberry and bilberry on digestive tract cancers. Antioxidants. 2021;10(6). https://doi.org/10.3390/antiox10060850
  24. Korenev IA, Tyak GV, Makarov SS. Creation of new varieties of forest berry plants and prospects of their intensive reproduction (in vitro). Forestry Information. 2019;(3):180–189. (In Russ.). https://doi.org/10.24419/LHI.2304-3083.2019.3.15
  25. Georgieva M, Badjakov I, Dincheva I, Yancheva S, Kondakova V. In vitro propagation of wild Bulgarian small berry fruits (bilberry, lingonberry, raspberry and strawberry). Bulgarian Journal of Agricultural Science. 2016;22(1):46–51.
  26. Mazurek M, Siekierzyńska A. Efficient in vitro propagation of Vaccinium vitis-idaea L. plants on the double phase medium. Electronic Journal of Polish Agricultural Universities. 2018;21(4). https://doi.org/10.30825/5.ejpau.160.2018.21.4
  27. Влияние состава питательных сред и регуляторов роста при клональном микроразмножении некоторых полиплоидных форм рода Vaccinium L. / Д. Н. Зонтиков [и др.] // Известия Самарского научного центра Российской академии наук. 2019. Т. 21. № 2. С. 39–44.
  28. Arigundam U, Variyath AM, Siow YL, Marshall D, Debnath SC. Liquid culture for efficient in vitro propagation of adventitious shoots in wild Vaccinium vitis-idaea ssp. minus (lingonberry) using temporary immersion and stationary bioreactors. Scientia Horticulturae. 2020;264. https://doi.org/10.1016/j.scienta.2020.109199
  29. Debnath S, Arigundam U.C. In vitro propagation strategies of medicinally important berry crop, lingonberry (Vaccinium vitis-idaea L.). Agronomy. 2020;10(5). https://doi.org/10.3390/agronomy10050744
  30. Upadyshev MT, Vershinina OV. Comparative assessment of the impact of magnetic pulse treatment at the stage of adaptation of blackberry and raspberry-blackberry hybrids microplants to non-sterile conditions. Pomiculture and Small Fruits Culture in Russia. 2020;(63):53–60. (In Russ.). https://doi.org/10.31676/2073-4948-2020-63-53-60
  31. Bjadovski IA, Upadyshev MT, Bronzova AD. Pulsed magnetic field impact on adaptation and vegetation of strawberry microplants (Fragaria×ananassa Duch.). Horticulture and Viticulture. 2021;(4):19–24. (In Russ.). https://doi.org/10.31676/0235-2591-2021-4-19-24
  32. Makarov SS, Kuznetsova IB, Upadyshev MT, Rodin SA, Chudetsky AI. Clonal micropropagation of cranberry (Oxycoccus palustris Pers.). Food Processing: Techniques and Technology. 2021;51(1):67–76. (In Russ.). https://doi.org/10.21603/2074-9414-2021-1-67-76
  33. Akimov MYu, Bessonov VV, Kodentsova VM, Eller KI, Vrzhesinskaya OA, Beketova NA, et al. Biological value of fruits and berries of Russian production. Problems of Nutrition. 2020;89(4):220–232. (In Russ.). https://doi.org/10.24411/0042-8833-2020-10055
Как цитировать?
Микроклональное размножение и особенности адаптации к условиям ex vitro лесных ягодных растений рода Vaccinium / А. И. Чудецкий [и др.] // Техника и технология пищевых производств. 2022. Т. 52. № 3. С. 570–581. https://doi.org/10.21603/2074-9414-2022-3-2386
О журнале