ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Quality and Safety of Game Meat from the Biocenosis of the Beloosipovo Mercury Deposit

Introduction. Mercury contamination is one of the most common environmental problems. The research objective was to study the qualitative composition and physicochemical properties of raw game meat obtained from the area near the Beloosipovo mercury deposit in order to define any possible contamination with xenobiotics.
Study objects and methods. The research featured rib eye muscle tissue and soft flesh of elks shot on the hunting farms of the Kemerovo Region aka Kuzbass.
Results and discussion. A complex set of experiments revealed the chemical composition of elk muscle tissue and flesh, as well as the mineral composition of elk muscle tissue. The samples were obtained from different parts of carcasses. The amino acid and fatty acid composition of elk muscle tissue made it possible to describe the biological value, mineral composition, and vitamin profile of elk meat. The physicochemical analysis included toughness, cooking losses, and moisture-retaining capacity, i.e. the properties that ensure juiciness. The research also featured the accumulation of xenobiotics in elk meat samples obtained from the biosinosis near the Beloosipovo mercury deposit.
Conclusion. The slaughter yield of elk meat was 51–53%, which exceeds the average yield of farm cattle meat by 4–6%. The moisture content was 73–78%, while the content of protein was between 20–24% and depended on the anatomical location of the muscle sample; the fat content reached 0.75–1.75%. The mercury accumulation at different storage temperature conditions ranged from 0.004 ± 0.001 to 0.009 ± 0.001 mg/kg, while the maximum allowable concentration of mercury is 0.03 mg/kg.
Elk, mercury, biocenosis, meat, chemical composition, function al and technological properties, aging
  1. Sergeeva IYu, Rainik VS, Markov AS, Vechtomova EA. Beverage composition for preventive nutrition: theoretical approach. Food Processing: Techniques and Technology. 2019;49(3):356–366. (In Russ.).
  2. Kocman D, Horvat M, Kotnik J. Mercury fractionation in contaminated soils from the Idrija mercury mine region. Journal of Environmental Monitoring. 2004;6(8):696–703.
  3. Zagury GJ, Neculita C-M, Bastien C, Deschênes L. Mercury fractionation, bioavailability, and ecotoxicity in highly contaminated soils from chlor-alkali plants. Environmental Toxicology and Chemistry. 2006;25(4):1138–1147.
  4. Wang D, Shi X, Wei S. Accumulation and transformation of atmospheric mercury in soil. Science of the Total Environment. 2003;304(1–3):209–214.
  5. Volʹfson FI, Druzhinin AV. Glavneyshie tipy rudnykh mestorozhdeniy [The main types of ore deposits]. Moscow: Nedra; 1975. 391 p. (In Russ.).
  6. Laperdina TG. Mercury determination in natural waters. Novosibi rsk: Nauka; 2000. 222 p. (In Russ.).
  7. Udodenko YuG, Devyatova TA, Gremyachih VA, Komov VT, Tregubov OV. The mercury maintenance in soils of different biotops of the Voronezh reserve. Regional Environment al Issues. 2011;(4):105–110. (In Russ.).
  8. Udodenko YuG, Devyatova TA, Komov VT, Tregubov OV, Odintsov AN. Mercury concentration in soil and earthworm (Oligochaeta, Lumbricidae) of Voronezh state reserve. Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2012;(2):209–214. (In Russ.).
  9. Gladyshev VP, Levitskaya SA, Filippova LM. Analiticheskaya khimiya rtuti [Analytical chemistry of mercury]. Moscow: Nauka; 1974. 228 p. (In Russ.).
  10. Swain EB, Jakus PM, Rice G, Lupi F, Maxson PA, Pacyna JM. Socioeconomic consequences of mercury use and pollution. Ambio. 2007;36(1):45–61.[45:SCOMUA]2.0.CO;2.
  11. Laperdina TG. Opredelenie form rtuti v obʺektakh okruzhayushchey sredy [Determination of forms of mercury in environmental objects]. Rtutʹ. Problemy geokhimii, ehkologii, a nalitiki: sbornik nauchnykh trudov [Mercury: geochemistry, ecology, and analytics: collection of research papers]. Moscow: IMGREH; 2005. p. 62–97. (In Russ.).
  12. Granovskiy EhI, Khasenova SK, Darishcheva AM. Zagryaznenie rtutʹyu okruzhayushchey sredy i metody demerkurizatsii [Mercury Contamination and demerculization techniques]. Almaty : Kazgos INTI; 2001. 98 p. (In Russ.).
  13. Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment. 2006;40(22):4048–4063.
  14. Ebinghaus R, Tripathi RM, Walischlager D, Lindberg SE. Natural and anthropogenic mercury sources and their impact on the air surface exchange of mercury on regional and global scales. In: Ebinghaus R, Turner RR, de Lacerda LD, Vasiliev O, Salomons W, editors. Mercury contaminated sites. Berlin, Heidelberg: Springer; 1999. pp. 3–50.
  15. Majlesi M, Malekzadeh J, Berizi E, Toori MA. Heavy metal content in farmed rainbow trout in relation to aquaculture area and feed pellets. Foods and Raw Materials. 2019;7(2):329–3 38.
  16. Yudovich YaE, Ketris MP. Mercury in coal as a serious environmental problem. Biosfera. 2009;1(2):237–247. (In Russ.).
  17. Bloom N. Determination of picogram levels of methylmercury by aqueous phase methylation, followed by cryogenic gas chromatography with cold vapor atomic fluorescence detection. Canadian Journal of Fisheries and Aquatic Sciences. 1989;46(7):1131–1140.
  18. Burbacher TM, Rodier PM, Weiss B. Methylmercury developmental neurotoxicity: A comparison of effects in humans and animals. Neurotoxicology and Teratology. 1990;12(3):191–202.
  19. Prosekov AYu. Hydro power plant “Krapivinsky”: current state and possible risks. Bulletin of Kamchatka State Technical University. 2021;(56):54–63. (In Russ.).
  20. Stein ED, Cohen Y, Winer AM. Environmental distribution and transformation of mercury compounds. Critical Reviews in Environmental Science and Technology. 1996;26(1):1–4 3.
  21. Cristol DA, Brasso RL, Condon AM, Fovargue RE, Friedman SL, Hallinger KK, et al. The movement of aquatic mercury through terrestrial food webs. Science. 2008;320(5874): 320–335.
  22. Alekhina NN, Ponomareva EI, Zharkova IM, Grebenshchikov AV. Assessment of functional properties and safety indicators of amaranth flour grain bread. Food Processing: Techniques and Technology. 2021;51(2):323–332. (In Russ.).
  23. Ermakov VV. Biogennaya migratsiya i detoksikatsiya rtuti [Biogenic migration and detoxification of mercury]. Rtutʹ v biosfere: ehkologo-geokhimicheskie aspekty: materialy mezhdunarodnogo simpoziuma [Mercury in the biosphere: ecological and geochemical aspects: Proceedings of the international symposium]. Moscow: GEOKHI RAN; 2010. p. 5–12. (In Russ.).
  24. Prosekov AYu, Domracheva AI. Characteristics of the level of salinity and hunting resources in the Kemerovo region. AgroEcoInfo. 2021;43(1). (In Russ.).
  25. Prosekov AYu. Effect of forest coverage on the dynamics of elk population in some areas of Kuzbass. Scientific Notes of V.I. Vernadsky Crimean Federal University. Biology. Chemistry. 2020;6(3):163–178. (In Russ.).
  26. Prosekov AYu, Boyko EV. Interrelation of forest biotopes and ungulates of Kuzbass. Use and Protection of Natural Resources of Russia. 2021;165(1):40–43. (In Russ.).
  27. Skalon NV, Stepanov PG, Prosekov AYu. Number dynamics of the moose, wolf, and bear in the Kemerovo region from the second half of the 20th century to the beginning of the 21st century. Herald of Tver State University. Series: Biology and Ecology. 2020;57(1):128–138. (In Russ.).
  28. Prosekov AYu, Kagan ES, Meshechkin VV. A predictive model of population dynamics of elk in Kemerovo region. The Herald of Game Management. 2020;17(2):100–106. (In Russ.).
  29. Shabrov FA. On using data of state forest inventory while assessing productivity of forest hunting ground lands for nutrition of elk ( Alces alces L.). Vestnik of Kostroma State University. 2014;20(7):79–81. (In Russ.).
  30. Komov VT. Soderzhanie rtuti v organakh i tkanyakh ryb, ptits i mlekopitayushchikh evropeyskoy chasti Rossii [Mercury content in the organs and tissues of fish, birds, and mammals of European Russia]. Rtutʹ v biosfere: ehkologogeokhimicheskie aspekty: Materialy mezhdunarodnogo simpoziuma [Mercury in the biosphere: ecological and geochemical aspects: Proceedings of the international symposium]. Moscow: G EOKHI RAN; 2010. p. 14–18. (In Russ.).
  31. Gorbunov AV, Lyapunov SM, Okina OI, Sheshukov VS. Intake assessment of small doses of mercury in the human body with food. Human Ecology. 2017;(10):16–20. (In Russ.).
  32. Antonenko VV. Otsenka kontaminatsii pishchevykh produktov, proizvedennykh i potreblyaemykh v Kurskoy oblasti [Assessment of contamination of foods produced and consumed in the Kursk region]. Molodezhnaya nauka i sovremennostʹ: materialy 85-oy Mezhdunarodnoy nauchnoy konferentsii studentov i molodykh uchenykh, posvyashchennoy 85-letiyu KGMU [Youth Science and Modernity: Proceedings of the 85th International research conference of students and young scientists dedicated to the 85th anniversary of Kursk State Medical University]; 2020; Kursk. Kursk: Kursk State Medical University; 2020. p. 309–312. (In Russ.).
  33. Tutelʹyan V.A. Novye riski i ugrozy v oblasti obespecheniya bezopasnosti pishchevoy produktsii [New risks and threats in the field of food safety]. Meat Technology. 2021;222 (6):6–13. (In Russ.).
How to quote?
Prosekov AYu, Altshuler OG, Kurbanova MG. Quality and Safety of Game Meat from the Biocenosis of the Beloosipovo Mercury Deposit (part 2). Food Processing: Techniques and Technology. 2021;51(4):654–663. https://doi. org/10.21603/2074-9414-2021-4-654-663.
About journal