ISSN 2074-9414 (Печать),
ISSN 2313-1748 (Онлайн)

Формирование структуры мякиша сбивного бездрожжевого хлеба при интенсивной СВЧ-конвективной выпечке

Аннотация
Разработка технологии сбивного бездрожжевого хлеба из муки цельносмолотого зерна пшеницы является актуальной задачей хлебопечения. Для реализации данной технологии необходимо правильно управлять процессом пенообразования сбивного бездрожжевого теста с сохранением высокопористой структуры мякиша сбивных тестовых заготовок и тонкостенной корки хлеба при выпечке. Цель работы – исследование изменения качества и установление режимов приготовления сбивного бездрожжевого теста, а также сбивных тестовых заготовок при их комбинированном СВЧ-конвективном нагреве.
В работе исследовались образцы сбивного бездрожжевого теста, полученного на смесительно-сбивально-формующей установке, и сбивные тестовые заготовки после предварительного СВЧ-нагрева со сформировавшимся мякишем мелкопористой структуры. Для оценки пористости мякиша хлеба разработали методику оптического количественного анализа структуры пузырьков воздуха.
С учетом ограничения на максимальный размер пузырьков воздуха в мякише были предварительно получены сбивные бездрожжевые тестовые заготовки плотностью 0,40 ± 0,03 г/см3 с мелкодисперсными воздушными пузырьками. Для формирования устойчивой высокопористой структуры их предварительно подвергали СВЧ-нагреву при температуре 65 ± 1 °С в центре мякиша, а затем конвективному нагреву при температуре 99 ± 1 °С в центре мякиша для формирования тонкостенной корки хлеба. Проведенные исследования показали зависимость изменения пористости мякиша и формирования его структуры от длительности СВЧ-нагрева сбивных тестовых заготовок. Определили рациональную продолжительность предварительного СВЧ-нагрева сбивных тестовых заготовок (70–80 с) и окончательного конвективного нагрева при выпечке хлеба (до 14 мин). Использование комбинированного СВЧ-конвективного нагрева сбивных тестовых заготовок позволяет сократить процесс их выпечки на 26 мин.
Представленный подход вместе с методикой оптической оценки пузырьков воздуха позволит разработать алгоритм оптимального управления процесса комбинированной выпечки хлеба. Разработанная технология сбивного бездрожжевого хлеба является высокоперспективной для внедрения в гражданское и войсковое хлебопечение.
Ключевые слова
Хлеб, мякиш, СВЧ, выпечка, пористость, качество
СПИСОК ЛИТЕРАТУРЫ
  1. Rudnev SD, Shevchenko TV, Ustinova YuV, Kryuk RV, Ivanov VV, Chistyakov AM. Technology and theory of mechanically activated water in bakery industry. Food Processing: Techniques and Technology. 2021;51(4):768–778. (In Russ.). https://doi.org/10.21603/2074-9414-2021-4-768-778
  2. Alekhina NN, Ponomareva EI, Zharkova IM, Grebenshchikov AV. Assessment of functional properties and safety indicators of amaranth flour grain bread. Food Processing: Techniques and Technology. 2021;51(2):323–332. (In Russ.). https://doi.org/10.21603/2074-9414-2021-2-323-332
  3. Smertina ES, Fedyanina LN, Lyakh VA. Hepatoprotective effect of breads with extracts of plants growing in the Far East. Foods and Raw Materials. 2020;8(2):232–240. https://doi.org/10.21603/2308-4057-2020-2-232-240
  4. Габдукаева Л. З., Сорокина Е. С. Характеристика современного рынка хлебобулочных изделий для функционального питания // Вестник технологического университета. 2017. Т. 20. № 1. С. 151–154.
  5. Романчиков С. А. Технология изготовления хлеба с использованием электрической хлебопекарной печи ХПЭ-ИУЗ с ультразвуком в импульсном режиме // Пищевая промышленность. 2019. № 2. С. 44–48.
  6. Garg А, Malafronte L, Windhab EJ. Baking kinetics of laminated dough using convective and microwave heating. Food and Bioproducts Processing. 2019;115:59–67. https://doi.org/10.1016/j.fbp.2019.02.007
  7. Magomedov GO, Plotnikova IV, Magomedov MG, Cheshinsky VL. Sanitary-technological events of bread production without yeast. Hygiene and Sanitation. 2019;98(7):777–782. (In Russ.). https://doi.org/10.18821/0016-9900-2019-98-7-777-782
  8. Kalla AM, Devaraju R. Microwave energy and its application in food industry: A review. Asian Journal of Dairy and Food Research. 2017;36(1):37–44. https://doi.org/10.18805/ajdfr.v0iOF.7303
  9. Kumar С, Karim МА. Microwave-convective drying of food materials: A critical review. Critical Reviews in Food Science and Nutrition. 2017;59(3):379–394. https://doi.org/10.1080/10408398.2017.1373269
  10. Chizoba Ekezie F-G, Sun D-W, Zhang H, Cheng J-H. Microwave-assisted food processing technologies for enhancing product quality and process efficiency: A review of recent developments. Trends in Food Science and Technology. 2017;67:58–69. https://doi.org/10.1016/j.tifs.2017.05.014
  11. Therdthai N, Tanvarakom T, Ritthiruangdej P, Zhou W. Effect of microwave assisted baking. Journal of Food Quality. 2016;39(4):245–254. https://doi.org/10.1111/jfq.12207
  12. Применение электроконтактного нагрева в хлебопечении: обзор / Б. А. Кулишов [и др.] // Ползуновский вестник. 2019. № 1. С. 106–113.
  13. Алексеев Г. В. Исследование возможностей повышения энерго- и ресурсосбережения при выпечке хлебобулочных изделий // Научные известия. 2018. № 11. С. 20–25.
  14. Kutlu N, Pandiselvam R, Saka I, Kamiloglu A, Sahni P, Kothakota A. Impact of different microwave treatments on food texture. Journal of Texture Stud. 2021. https://doi.org/10.1111/jtxs.12635
  15. Опыт применения СВЧ-энергии при производстве пищевых продуктов / Н. Ф. Ушакова [и др.] // Пищевая промышленность. 2013. № 10. С. 30–32.
  16. Рущиц А. А., Щербакова Е. И. Применение СВЧ-нагрева в пищевой промышленности и общественном питании // Вестник Южно-Уральского государственного университета. Серия: Пищевые и биотехнологии. 2014. Т. 2. № 1. С. 9–14.
  17. Bou-Orm R, Jury V, Boillereaux L, Le-Bail A. Microwave baking of bread; a review on the impact of formulation and process on bread quality. Food Reviews International. 2021. https://doi.org/10.1080/87559129.2021.1931299
  18. Wang M, Sun M, Zhang Y, Chen Y, Wu Y, Ouyang J. Effect of microwave irradiation-retrogradation treatment on the digestive and physicochemical properties of starches with different crystallinity. Food Chemistry. 2019;298. https://doi.org/10.1016/j.foodchem.2019.125015
  19. Houšová J, Hoke K. Temperature profiles in dough products during microwave heating with susceptors. Czech Journal of Food Sciences. 2018;20(4):151–160. https://doi.org/10.17221/3526-CJFS
  20. Bhatt K, Vaidya D, Kaushal M, Gupta A, Soni P, Arya P, et al. Microwaves and radiowaves: In food processing and preservation. International Journal of Current Microbiology and Applied Sciences. 2020;9(9):118–131. https://doi.org/10.20546/ijcmas.2020.909.015
  21. Guzik P, Kulawik P, Zając M, Migdał W. Microwave applications in the food industry: an overview of recent developments. Critical Reviews in Food Science and Nutrition. 2021. https://doi.org/10.1080/10408398.2021.1922871
  22. Thuengtung S, Ogawa Y. Comparative study of conventional steam cooking and microwave cooking on cooked pigmented rice texture and their phenolic antioxidant. Food Science and Nutrition. 2020;8(2):965–972. https://doi.org/10.1002/fsn3.1377
  23. Шапиро Л., Стокман Д. Компьютерное зрение. М.: БИНОМ. Лаборатория знаний, 2013. 752 с.
Как цитировать?
Формирование структуры мякиша сбивного бездрожжевого хлеба при интенсивной СВЧ-конвективной выпечке / Г. О. Магомедов [и др.] // Техника и технология пищевых производств. 2022. Т. 52. № 3. С. 426–438. https:// doi.org/10.21603/2074-9414-2022-3-2375
О журнале